Leadless Cardiac Pacing: New Horizons

Cardiology and Therapy - Tập 12 Số 1 - Trang 21-33 - 2023
Katarzyna Małaczyńska-Rajpold1, Mark Elliot2,3, Nadeev Wijesuriya2,3, Vishal Mehta2,3, Tom Wong1, Christopher A. Rinaldi2,3, Jonathan M. Behar2,1,3
1Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
2Imaging Sciences and Biomedical Engineering, Kings College London, London, UK
3St Thomas’ Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Udo EO, Zuithoff NPA, Van Hemel NM, et al. Incidence and predictors of short- and long-term complications in pacemaker therapy: the FOLLOWPACE study. Heart Rhythm. 2012;9:728–35.

Wang Y, Hou W, Zhou C, et al. Meta-analysis of the incidence of lead dislodgement with conventional and leadless pacemaker systems. PACE Pacing Clin Electrophysiol. 2018;41:1365–71.

Haghjoo M, Nikoo MH, Fazelifar AF, Alizadeh A, Emkanjoo Z, Sadr-Ameli MA. Predictors of venous obstruction following pacemaker or implantable cardioverter-defibrillator implantation: a contrast venographic study on 100 patients admitted for generator change, lead revision, or device upgrade. Europace. 2007;9:328–32.

Tobin K, Stewart J, Westveer D, Frumin H. Acute complications of permanent pacemaker implantation: their financial implication and relation to volume and operator experience. Am J Cardiol. 2000;85:774–6.

Cantillon DJ, Exner DV, Badie N, et al. Complications and health care costs associated with transvenous cardiac pacemakers in a nationwide assessment. JACC Clin Electrophysiol. 2017;3:1296–305.

Cantillon DJ, Dukkipati SR, Ip JH, et al. Comparative study of acute and mid-term complications with leadless and transvenous cardiac pacemakers. Heart Rhythm. 2018;15:1023–30.

Spickler JW, Rasor NS, Kezdi P, Misra SN, Robins KE, LeBoeuf C. Totally self-contained intracardiac pacemaker. J Electrocardiol. 1970;3:325–31.

Vardas P, Politopoulos C, Manios E, Parthenakis F, Tsagarkis C. A miniature pacemaker introduced intravenously and implanted endocardially: preliminary findings from an experimental study. Eur J Card Pacing Electrophysiol. 1991;1:27–33.

Takeuchi ES, Quattrini PJ, Greatbatch W. Lithium/silver vanadium oxide batteries for implantable defibrillators. Pacing Clin Electrophysiol. 1988;11:2035–9.

Bock DC, Marschilok AC, Takeuchi KJ, Takeuchi ES. Batteries used to power implantable biomedical devices. Electrochim Acta. 2012;84:155–64.

Boveda S, Lenarczyk R, Haugaa KH, et al. Use of leadless pacemakers in Europe: results of the European Heart Rhythm Association survey. Europace. 2018;20:555–9.

Reddy VY, Knops RE, Sperzel J, et al. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation. 2014;129:1466–71.

Knops RE, Tjong FVY, Neuzil P, et al. Chronic performance of a leadless cardiac pacemaker: 1-year follow-up of the LEADLESS trial. J Am Coll Cardiol. 2015;65:1497–504.

Reddy VY, Exner DV, Cantillon DJ, et al. Percutaneous implantation of an entirely intracardiac leadless pacemaker. N Engl J Med. 2015;373:1125–35.

Lakkireddy D, Knops R, Atwater B, et al. A worldwide experience of the management of battery failures and chronic device retrieval of the Nanostim leadless pacemaker. Heart Rhythm. 2017;14:1756–63.

Ibrahim R, Khoury A, El-Chami MF. Leadless pacing: where we currently stand and what the future holds. Curr Cardiol Rep. 2022;1:1–8. https://doi.org/10.1007/s11886-022-01752-y.

Reddy VY, Exner DV, Doshi R, et al. Primary results on safety and efficacy from the LEADLESS II—phase 2 worldwide clinical trial. Clin Electrophysiol. 2022;8:115–7. https://doi.org/10.1016/j.jacep.2021.11.002.

Ritter P, Group MTPS, Duray GZ, et al. Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study. Eur Heart J. 2015;36:2510–9. https://academic.oup.com/eurheartj/article/36/37/2510/2465991. Accessed 2 Sep 2022.

Reynolds D, Duray GZ, Omar R, et al. A leadless intracardiac transcatheter pacing system. N Engl J Med. 2016;374:533–41.

Duray GZ, Ritter P, El-Chami M, et al. Long-term performance of a transcatheter pacing system: 12-month results from the Micra Transcatheter Pacing Study. Heart Rhythm. 2017;14:702–9.

Roberts PR, Clementy N, Al Samadi F, et al. A leadless pacemaker in the real-world setting: the Micra Transcatheter Pacing System Post-Approval Registry. Heart Rhythm. 2017;14:1375–9.

El-Chami MF, Al-Samadi F, Clementy N, et al. Updated performance of the Micra transcatheter pacemaker in the real-world setting: a comparison to the investigational study and a transvenous historical control. Heart Rhythm. 2018;15:1800–7.

Tjong FVY, Knops RE, Udo EO, et al. Leadless pacemaker versus transvenous single-chamber pacemaker therapy: a propensity score-matched analysis. Heart Rhythm. 2018;15:1387–93.

El-Chami MF, Soejima K, Piccini JP, et al. Incidence and outcomes of systemic infections in patients with leadless pacemakers: data from the Micra IDE study. PACE Pacing Clin Electrophysiol. 2019;42:1105–10.

Hauser RG, Hayes DL, Kallinen LM, et al. Clinical experience with pacemaker pulse generators and transvenous leads: an 8-year prospective multicenter study. Heart Rhythm. 2007;4:154–60.

Vamos M, Erath JW, Benz AP, Bari Z, Duray GZ, Hohnloser SH. Incidence of cardiac perforation with conventional and with leadless pacemaker systems: a systematic review and meta-analysis. J Cardiovasc Electrophysiol. 2017;28:336–46.

El-Chami MF, Johansen JB, Zaidi A, et al. Leadless pacemaker implant in patients with pre-existing infections: results from the Micra postapproval registry. J Cardiovasc Electrophysiol. 2019;30:569–74.

El-Chami MF, Bonner M, Holbrook R, et al. Leadless pacemakers reduce risk of device-related infection: review of the potential mechanisms. Heart Rhythm. 2020;17:1393–7.

Dar T, Akella K, Murtaza G, et al. Comparison of the safety and efficacy of Nanostim and Micra transcatheter leadless pacemaker (LP) extractions: a multicenter experience. J Interv Card Electrophysiol. 2020;57:133–40.

Li J, Hou WB, Cao MK, et al. Safety and efficacy of leadless pacemaker retrieval. J Cardiovasc Electrophysiol. 2019;30:1671–8.

Bhatia NK, Kiani S, Merchant FM, et al. Life cycle management of Micra transcatheter pacing system: data from a high-volume center. J Cardiovasc Electrophysiol. 2021;32:484–90.

Loring Z, North R, Hellkamp AS, et al. VVI pacing with normal QRS duration and ventricular function: MOST trial findings relevant to leadless pacemakers. PACE Pacing Clin Electrophysiol. 2020;43:1461–6.

Brignole M, Auricchio A, Baron-Esquivias G, et al. ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur Heart J. 2013;34:2281–329.

Razeghi O, Strocchi M, Lee A, et al. Tracking the motion of intracardiac structures aids the development of future leadless pacing systems. J Cardiovasc Electrophysiol. 2020;31:2431–9.

Kiblboeck D, Reiter C, Kammler J, et al. Artefacts in 1.5 Tesla and 3 Tesla cardiovascular magnetic resonance imaging in patients with leadless cardiac pacemakers. J Cardiovasc Magn Reson. 2018;20:47.

Hála P, Neužil P, Keller J, et al. Quantification of artifacts during cardiac magnetic resonance in patients with leadless Micra pacemakers. J Cardiovasc Electrophysiol. 2021;32:1367–75.

Kruse I, Arnman K, Conradson TB, Ryden L. A comparison of the acute and long-term hemodynamic effects of ventricular inhibited and atrial synchronous ventricular inhibited pacing. Circulation. 1982;65:846–55.

El-Chami MF, Bockstedt L, Longacre C, et al. Leadless vs. transvenous single-chamber ventricular pacing in the Micra CED study: 2-year follow-up. Eur Heart J. 2022;43:1207–15. https://academic.oup.com/eurheartj/article/43/12/1207/6425620. Accessed 3 May 2022.

Chinitz L, Ritter P, Khelae SK, et al. Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker: results from the Micra atrioventricular feasibility studies. Heart Rhythm. 2018;15:1363–71.

Garweg C, Splett V, Sheldon TJ, et al. Behavior of leadless AV synchronous pacing during atrial arrhythmias and stability of the atrial signals over time—results of the MARVEL Evolve subanalysis. PACE Pacing Clin Electrophysiol. 2019;42:381–7.

Steinwender C, Khelae SK, Garweg C, et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker: results from the MARVEL 2 study. JACC Clin Electrophysiol. 2020;6:94–106.

Bereuter L, Gysin M, Kueffer T, et al. Leadless dual-chamber pacing: a novel communication method for wireless pacemaker synchronization. JACC Basic Transl Sci. 2018;3:813–23.

Vatterott PJ, Eggen MD, Hilpisch KE, et al. Implant, performance, and retrieval of an atrial leadless pacemaker in sheep. Heart Rhythm. 2021;18:288–96.

Knops RE, Olde Nordkamp LRA, Delnoy P-PHM, et al. Subcutaneous or transvenous defibrillator therapy. N Engl J Med. 2020;383:526–36.

Tjong FVY, Brouwer TF, Smeding L, et al. Combined leadless pacemaker and subcutaneous implantable defibrillator therapy: feasibility, safety, and performance. Europace. 2016;18:1740–7.

Tjong FVY, Brouwer TF, Koop B, et al. Acute and 3-month performance of a communicating leadless antitachycardia pacemaker and subcutaneous implantable defibrillator. JACC Clin Electrophysiol. 2017;3:1487–98.

Breeman KTN, Swackhamer B, Brisben AJ, et al. Long-term performance of a novel communicating antitachycardia pacing-enabled leadless pacemaker and subcutaneous implantable cardioverter-defibrillator system: a comprehensive preclinical study. Heart Rhythm. 2022;19:837–46.

Fernández-Palacios G, García-Morán E, Sandín-Fuentes M, García-Granja P, Rubio J, San Román A. The utility of a combined synchronous atrioventricular leadless pacemaker and subcutaneous implantable cardiac defibrillator system in bilateral upper limb venous occlusion. Europace. 2020;23:814.

Crozier I, O’Donnell D, et al. The extravascular implantable cardioverter-defibrillator: the pivotal study plan. J Cardiovasc Electrophysiol. 2021;32:2371–8.

Wijesuriya N, Elliott MK, Mehta V, et al. Leadless left bundle branch area pacing in cardiac resynchronisation therapy: advances, challenges and future directions. Front Physiol. 2022;13: 898866.

Auricchio A, Delnoy PP, Butter C, et al. Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the Wireless Stimulation Endocardially for CRT (WiSE-CRT) study. Europace. 2014;16:681–8.

Reddy VY, Miller MA, Neuzil P, et al. Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV study. J Am Coll Cardiol. 2017;69:2119–29.

Sieniewicz BJ, Behar JM, Gould J, et al. Guidance for optimal site selection of a leadless left ventricular endocardial electrode improves acute hemodynamic response and chronic remodeling. JACC Clin Electrophysiol. 2018;4:860–8.

Sieniewicz BJ, Betts TR, James S, et al. Real-world experience of leadless left ventricular endocardial cardiac resynchronization therapy: a multicenter international registry of the WiSE-CRT pacing system. Heart Rhythm. 2020;17:1291–7.

Wijesuriya N, Elliott MK, Mehta V, et al. Leadless left ventricular endocardial pacing for cardiac resynchronization therapy: a systematic review and meta-analysis. Heart Rhythm. 2022;19:1176–83.

Sieniewicz BJ, Gould JS, Rimington HM, Ioannou N, Rinaldi CA. Transseptal delivery of a leadless left ventricular endocardial pacing electrode. JACC Clin Electrophysiol. 2017;3:1333–5. https://doi.org/10.1016/j.jacep.2017.04.020.

Okabe T, Hummel JD, Bank AJ, et al. Leadless left ventricular stimulation with WiSE-CRT System—initial experience and results from phase I of SOLVE-CRT Study (nonrandomized, roll-in phase). Heart Rhythm. 2022;19:22–9.

Singh JP, Walsh MN, Kubo SH, et al. Modified design of stimulation of the left ventricular endocardium for cardiac resynchronization therapy in nonresponders, previously untreatable and high-risk upgrade patients (SOLVE-CRT) trial. Am Heart J. 2021;235:158–62. https://pubmed.ncbi.nlm.nih.gov/33596412/. Accessed 3 May 2022.

Carabelli A, Jabeur M, Jacon P, et al. European experience with a first totally leadless cardiac resynchronization therapy pacemaker system. Europace. 2021;23:740–7.

Sidhu BS, Gould J, Porter B, et al. Completely leadless cardiac resynchronization defibrillator system. JACC Clin Electrophysiol. 2020;6:588–9.

Elliott MK, Sidhu BS, Mehta VS, Gould J, Martic D, Rinaldi CA. The importance of leadless pacemaker positioning in relation to subcutaneous implantable cardioverter-defibrillator sensing in completely leadless cardiac resynchronization and defibrillation systems. Heart Rhythm Case Rep. 2021;7:628–632. https://pubmed.ncbi.nlm.nih.gov/34552857/. Accessed 3 May 2022.

Teigeler T, Kolominsky J, Vo C, et al. Intermediate-term performance and safety of His-bundle pacing leads: a single-center experience. Heart Rhythm. 2021;18:743–9.

Padala SK, Ellenbogen KA. Left bundle branch pacing is the best approach to physiological pacing. Heart Rhythm O2. 2020;1:59–67. http://www.heartrhythmopen.com/article/S266650182030009X/fulltext. Accessed 17 Jan 2022.

Zhang W, Huang J, Qi Y, et al. Cardiac resynchronization therapy by left bundle branch area pacing in patients with heart failure and left bundle branch block. Heart Rhythm. 2019;16:1783–90.

Elliott MK, Jacon P, Sidhu BS, et al. Technical feasibility of leadless left bundle branch area pacing for cardiac resynchronization: a case series. Eur Heart J Case Rep. 2021;5. https://academic.oup.com/ehjcr/article/5/11/ytab379/6374927. Accessed 17 Jan 2022.

Franzina N, Zurbuchen A, Zumbrunnen A, et al. A miniaturized endocardial electromagnetic energy harvester for leadless cardiac pacemakers. PLoS One. 2020;15:e0239667.

Zurbuchen A, Haeberlin A, Bereuter L, et al. The Swiss approach for a heartbeat-driven lead- and batteryless pacemaker. Heart Rhythm. 2017;14:294–9.