Lead-free piezoceramics – Where to move on?

Journal of Materiomics - Tập 2 Số 1 - Trang 1-24 - 2016
Chang‐Hyo Hong1, Hwang-Pill Kim1, Byung-Yul Choi1, Hongliang Han1, Jae Sung Son1, Chang Won Ahn2, Wook Jo1
1School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
2Department of Physics and EHSRC, University of Ulsan, Ulsan 44610, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Commission Regulation (EU) 2015/628 of 22 April 2015 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, 2015

2012

EU-Directive 2002/95/EC, 2003

EU-Directive 2002/96/EC, 2003

2011

Saito, 2004, Lead-Free piezoceramics, Nature, 432, 84, 10.1038/nature03028

Cross, 2004, Materials science: lead-free at last, Nature, 432, 24, 10.1038/nature03142

Rödel, 2015, Transferring lead-free piezoelectric ceramics into application, J Eur Ceram Soc, 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013

Takenaka, 2005, Current status and prospects of lead-free piezoelectric ceramics, J Eur Ceram Soc, 25, 2693, 10.1016/j.jeurceramsoc.2005.03.125

Shrout, 2007, Lead-Free piezoelectric ceramics: alternatives for PZT?, J Electroceram, 19, 113, 10.1007/s10832-007-9047-0

Panda, 2009, Review: environmental friendly lead-free piezoelectric materials, J Mater Sci, 44, 5049, 10.1007/s10853-009-3643-0

Damjanovic, 2010, What can Be expected from lead-free piezoelectric materials?, Funct Mater Lett, 3, 5, 10.1142/S1793604710000919

Aksel, 2010, Advances in lead-free piezoelectric materials for sensors and actuators, Sensors, 10, 1935, 10.3390/s100301935

Lu, 2011, A review on lead-free piezoelectric ceramics studies in China, J Adv Dielectr, 1, 269, 10.1142/S2010135X11000409

Jo, 2012, Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective, J Electroceram, 29, 71, 10.1007/s10832-012-9742-3

Shvartsman, 2012, Lead-Free relaxor ferroelectrics, J Am Ceram Soc, 95, 1, 10.1111/j.1551-2916.2011.04952.x

Priya, 2012

Li, 2013, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J Am Ceram Soc, 96, 3677, 10.1111/jace.12715

Coondoo, 2013, Lead-Free piezoelectrics: current status and perspectives, J Adv Dielectr, 3, 1330002, 10.1142/S2010135X13300028

Glaum, 2014, Electric fatigue of lead-free piezoelectric materials, J Am Ceram Soc, 97, 665, 10.1111/jace.12811

Wu, 2015, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem Rev, 115, 2559, 10.1021/cr5006809

Thurnauer, 1947

Shirane, 1952, Crystal structure of Pb(Zr-Ti)O3, J Phys Soc Jpn, 7, 333, 10.1143/JPSJ.7.333

Jaffe, 1954, Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics, J Appl Phys, 25, 809, 10.1063/1.1721741

Cao, 1993, Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution, Phys Rev B, 47, 4825, 10.1103/PhysRevB.47.4825

Amin, 1986, Effect of elastic boundary conditions on morphotropic Pb(Zr,Ti)O3 piezoelectrics, Phys Rev B, 34, 1595, 10.1103/PhysRevB.34.1595

Ahart, 2008, Origin of morphotropic phase boundaries in ferroelectrics, Nature, 451, 545, 10.1038/nature06459

Cross, 1987, Relaxor ferroelectrics, Ferroelectrics, 76, 241, 10.1080/00150198708016945

Moulson, 2003

Park, 1997, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J Appl Phys, 82, 1804, 10.1063/1.365983

Ge, 2012, Ultrahigh electromechanical response in (1-x)(Na0.5 Bi0.5)TiO3-xBaTiO3 single-crystals via polarization extension, J Appl Phys, 111, 093508, 10.1063/1.4709619

Jaffe, 1971

Guo, 2004, Phase transitional behavior and piezoelectric properties of (Na0.5 K0.5)NbO3-LiNbO3 ceramics, Appl Phys Lett, 85, 4121, 10.1063/1.1813636

Zhang, 2006, Piezoelectric properties in perovskite 0.948(K0.5 Na0.5)NbO3-0.052LiSbO3 lead-free ceramics, J Appl Phys, 100, 104108, 10.1063/1.2382348

Wang, 2009, Universality in phase diagram of (K,Na)NbO3-SrTiO3 solid solutions, Appl Phys Lett, 95, 092905, 10.1063/1.3224196

Takenaka, 2008, Current developments and prospective of lead-free piezoelectric ceramics, Jpn J Appl Phys, 47, 3787, 10.1143/JJAP.47.3787

Atsushi, 1999, Dielectric and piezoelectric properties of (Bi0.5 Na0.5)TiO3-(Bi0.5 K0.5)TiO3 systems, Jpn J Appl Phys, 38, 5564, 10.1143/JJAP.38.5564

Takenaka, 1991, (Bi1/2 Na1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics, Jpn J Appl Phys, 30, 2236, 10.1143/JJAP.30.2236

Ma, 2012, Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2 Na1/2)TiO3-BaTiO3 piezoelectrics, Phys Rev Lett, 109, 10.1103/PhysRevLett.109.107602

Ma, 2011, In situ transmission electron microscopy study on the phase transitions in lead-free (1−x)(Bi1/2 Na1/2) TiO3-xBaTiO3 ceramics, J Am Ceram Soc, 94, 4040, 10.1111/j.1551-2916.2011.04670.x

Sapper, 2012, Influence of electric Fields on the depolarization temperature of Mn-doped (1−x)Bi1/2 Na1/2 TiO3-xBaTiO3, J Appl Phys, 111, 014105, 10.1063/1.3674275

Sapper, 2014, Electric-field-temperature phase diagram of the ferroelectric relaxor system (1−x)(Bi1/2 Na1/2)TiO3-xBaTiO3 doped with manganese, J Appl Phys, 115, 194104, 10.1063/1.4876746

Sapper, 2014, Aging in the relaxor and ferroelectric state of Fe-doped (1−x)(Bi1/2 Na1/2)TiO3-xBaTiO3 piezoelectric ceramics, J Appl Phys, 116, 104102, 10.1063/1.4894630

Matsubara, 2004, Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid, Jpn J Appl Phys, 43, 7159, 10.1143/JJAP.43.7159

Matsubara, 2005, Sintering and piezoelectric properties of potassium sodium niobate ceramics with newly developed sintering aid, Jpn J Appl Phys, 44, 258, 10.1143/JJAP.44.258

Park, 2008, Microstructure and piezoelectric properties of the CuO-added (Na0.5 K0.5) (Nb0.97 Sb0.03 ) O3 lead-free piezoelectric ceramics, J Appl Phys, 104, 034103, 10.1063/1.2965197

Lim, 2010, (K,Na)NbO3-Based ceramics for piezoelectric “hard” lead-free material, J Am Ceram Soc, 93, 1218, 10.1111/j.1551-2916.2009.03528.x

Tsai, 2005, The characteristics of ultrasonic therapeutic transducers and used lead-free non-stoichiometric NKN-based piezoelectric ceramics, Jpn J Appl Phys, 44, 258

Haertling, 1999, Ferroelectric ceramics: history and technology, J Am Ceram Soc, 82, 797, 10.1111/j.1151-2916.1999.tb01840.x

Voigt, 1910

Jaffe, 1958, Piezoelectric ceramics, J Am Ceram Soc, 41, 494, 10.1111/j.1151-2916.1958.tb12903.x

Megaw, 1952, Origin of ferroelectricity in barium titanate and other perovskite-type crystals, Acta Crystallogr, 5, 739, 10.1107/S0365110X52002069

Sharpe, 1960, Method for measuring the dielectric constant of ferroelectric ceramics at S-band frequencies, J Am Ceram Soc, 43, 302, 10.1111/j.1151-2916.1960.tb13658.x

Merz, 1949, The electric and optical behavior of BaTiO3 single-domain crystals, Phys Rev, 76, 1221, 10.1103/PhysRev.76.1221

Merz, 1953, Double hysteresis loop of BaTiO3 at the curie point, Phys Rev, 91, 513, 10.1103/PhysRev.91.513

Wieder, 1955, Ferroelectric hysteresis in barium titanate single crystals, J Appl Phys, 26, 1479, 10.1063/1.1721934

Berlincourt, 1956, Recent developments in ferroelectric transducer materials, Trans Ultrason Eng, 53

Perls, 1958, Primary pyroelectricity in barium titanate ceramics, J Appl Phys, 29, 1297, 10.1063/1.1723430

Scott, 2007, Applications of modern ferroelectrics, Science, 315, 954, 10.1126/science.1129564

Damjanovic, 2010, A morphotropic phase boundary system based on polarization rotation and polarization extension, Appl Phys Lett, 97, 062906, 10.1063/1.3479479

Fu, 2000, Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics, Nature, 403, 281, 10.1038/35002022

Wada, 1999, Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations, Jap J Appl Phys, 38, 5505, 10.1143/JJAP.38.5505

Jo, 2011, Evolving morphotropic phase boundary in lead-free (Bi1/2 Na1/2)TiO3-BaTiO3 piezoceramics, J Appl Phys, 109, 014110, 10.1063/1.3530737

Sato, 2014, Monoclinic nanodomains in morphotropic phase boundary Pb(Mg1/3 Nb2/3)O3-PbTiO3, Appl Phys Lett, 104, 082905, 10.1063/1.4866791

Noheda, 2006, Bridging phases at the morphotropic boundaries of lead oxide solid solutions, Phase Transit, 79, 5, 10.1080/01411590500467262

Kreisel, 2009, Phase transitions and ferroelectrics: revival and the future in the field, Phase Transit, 82, 633, 10.1080/01411590903335249

Noheda, 2000, Stability of the monoclinic phase in the ferroelectric perovskite PbZr1−x TixO3, Phys Rev B, 63, 10.1103/PhysRevB.63.014103

Schönau, 2007, Nanodomain Structure of Pb(Zr1−x Tix)O3 at Its Morphotropic Phase Boundary: Investigations from local to average structure, Phys Rev B, 75, 10.1103/PhysRevB.75.184117

Pandey, 2008, Stability of ferroic phases in the highly piezoelectric Pb(ZrxTi1−x)O3 ceramics, Acta Crystallogr A, 64, 192, 10.1107/S0108767307055511

Singh, 2007, High-resolution synchrotron x-ray diffraction study of Zr-rich compositions of Pb(ZrxTi1−x)O3 (0.525 <x< 0.60): evidence for the absence of the rhombohedral phase, Appl Phys Lett, 91, 192904, 10.1063/1.2804008

Cordero, 2011, Octahedral tilting, monoclinic phase and the phase diagram of PZT, J Phys C, 23, 415901

Carreaud, 2006, Monoclinic morphotropic phase and grain size-induced polarization rotation in Pb(Mg1/3 Nb2/3)O3-PbTiO3, Appl Phys Lett, 89, 252906, 10.1063/1.2415999

Burkovsky, 2012, Structural heterogeneity and diffuse scattering in morphotropic lead zirconate-titanate single crystals, Phys Rev Lett, 109, 10.1103/PhysRevLett.109.097603

Lummen, 2014, Thermotropic phase boundaries in classic ferroelectrics, Nat Commun, 5, 3172, 10.1038/ncomms4172

Schönau, 2007, In situ synchrotron diffraction investigation of morphotropic Pb(Zr1−x Tix)O3 under an applied electric field, Phys Rev B, 76, 10.1103/PhysRevB.76.144112

Rossetti, 2008, Ferroelectric solid solutions with morphotropic Boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states, J Appl Phys, 103, 114113, 10.1063/1.2930883

Frantti, 2008, Evidence against the polarization rotation model of piezoelectric perovskites at the morphotropic phase boundary, J Phys C, 20, 472203

Janolin, 2008, High-pressure effect on PbTiO3: an investigation by Raman and X-Ray scattering up to 63 GPa, Phys Rev Lett, 101, 10.1103/PhysRevLett.101.237601

Zhang, 2014, Adaptive ferroelectric state at morphotropic phase boundary: coexisting tetragonal and rhombohedral phases, Acta Mater, 71, 176, 10.1016/j.actamat.2014.03.007

Heitmann, 2014, Thermodynamics of ferroelectric solid solutions with morphotropic phase boundaries, J Am Ceram Soc, 97, 1661, 10.1111/jace.12979

Datta, 2009, On the symmetry of the morphotropic phase boundary in ferroelectric BiScO3-PbTiO3 system, Appl Phys Lett, 95, 251901, 10.1063/1.3268478

Khachaturyan, 2010, Ferroelectric solid solutions with morphotropic boundary: rotational instability of polarization, metastable coexistence of phases and nanodomain adaptive states, Philos Mag, 90, 37, 10.1080/14786430903074789

Heitmann, 2010, Thermodynamics of polar anisotropy in morphotropic ferroelectric solid solutions, Philos Mag, 90, 71, 10.1080/14786430902897750

Schneider, 2014, Anisotropy of ferroelectric behavior of (1-x)Bi1/2 Na1/2 TiO3-BaTiO3 single crystals across the morphotropic phase boundary, J Appl Phys, 116, 044111, 10.1063/1.4891529

Tennery, 1968, Thermal and X-ray diffraction studies of NaNbO3-KNbO3 System, J Appl Phys, 39, 4749, 10.1063/1.1655833

Dai, 2009, Morphotropic phase boundary and electrical properties of K1−x NaxNbO3 lead-free ceramics, Appl Phys Lett, 94, 042905, 10.1063/1.3076105

Egerton, 1959, Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate, J Am Ceram Soc, 42, 438, 10.1111/j.1151-2916.1959.tb12971.x

Guo, 2005, (Na0.5 K0.5 NbO3-LiTaO3 lead-free piezoelectric ceramics, Mater Lett, 59, 241, 10.1016/j.matlet.2004.07.057

Rubio-Marcos, 2007, Sintering and properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics, J Eur Ceram Soc, 27, 4125, 10.1016/j.jeurceramsoc.2007.02.110

Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5 Na0.5 TiO3-BaTiO3-K0.5 Na0.5 NbO3 system, Appl Phys Lett, 91, 112906, 10.1063/1.2783200

Yang, 2007, Phase transitional behavior and electrical properties of lead-free (K0.44 Na0.52 Li0.04)(Nb0.96−x TaxSb0.04)O3 piezoelectric ceramics, Appl Phys Lett, 90, 042911, 10.1063/1.2436648

Hollenstein, 2005, Piezoelectric properties of Li- and Ta-modified (K0.5 Na0.5)NbO3 ceramics, Appl Phys Lett, 87, 182905, 10.1063/1.2123387

Zhao, 2008, Enhanced dielectric and piezoelectric properties in LiTaO3-doped lead-free (K,Na)NbO3 ceramics by optimizing sintering temperature, Scr Mater, 58, 429, 10.1016/j.scriptamat.2007.10.028

Wang, 2010, Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv Funct Mater, 20, 1924, 10.1002/adfm.201000284

Shen, 2011, Phase transition and electrical properties of LiNbO3-modified K0.49 Na0.51 NbO3 lead-free piezoceramics, J Mater Sci, 22, 1071

Wang, 2008, Phase transition and electrical properties of LiNbO3-modified K0.49 Na0.51 NbO3 lead-free piezoceramics, Appl Phys Lett, 93, 092904, 10.1063/1.2977551

Wongsaenmai, 2012, Effect of Li addition on phase formation behavior and electrical properties of (K0.5 Na0.5)NbO3 lead free ceramics, Ceram Int, 38, 147, 10.1016/j.ceramint.2011.06.049

Du, 2007, The microstructure and ferroelectric properties of (K0.5 Na0.5)NbO3-LiNbO3 lead-free piezoelectric ceramics, Mater Sci Eng, 136, 165, 10.1016/j.mseb.2006.09.031

Song, 2007, Microstructure and piezoelectric properties of (1−x)(Na0.5 K0.5)NbO3-xLiNbO3 ceramics, J Am Ceram Soc, 90, 1812, 10.1111/j.1551-2916.2007.01698.x

Klein, 2007, A study of the phase diagram of (K,Na,Li)NbO3 determined by dielectric and piezoelectric measurements, and Raman spectroscopy, J Appl Phys, 102, 014112, 10.1063/1.2752799

Wang, 2011, High piezoelectric d33 coefficient in Li-modified lead-free (Na,K)NbO3 ceramics sintered at optimal temperature, Appl Phys Express, 4, 061501, 10.1143/APEX.4.061501

Wu, 2007, Piezoelectric properties of LiSbO3-modified (K0.48 Na0.52)NbO3 lead-free ceramics, Jpn J Appl Phys, 46, 7375, 10.1143/JJAP.46.7375

Lin, 2007, Structure and electrical properties of K0.5 Na0.5 NbO3-LiSbO3 lead-free piezoelectric ceramics, J Appl Phys, 101, 074111, 10.1063/1.2715486

Wu, 2007, Compositional dependence of phase structure and electrical properties in (K0.42 Na0.58)NbO3-LiSbO3 lead-free ceramics, J Appl Phys, 102, 114113, 10.1063/1.2822454

Zang, 2006, Perovskite (Na0.5 K0.5)1−x(LiSb)xNb1−x O3 lead-free piezoceramics, Appl Phys Lett, 88, 212908, 10.1063/1.2206554

Li, 2007, Effect of antimony concentration on the crystalline structure, dielectric, and piezoelectric properties of (Na0.5 K0.5)0.945 Li0.055 Nb1−x SbxO3 solid solutions, J Am Ceram Soc, 90, 3070, 10.1111/j.1551-2916.2007.01875.x

Zhang, 2009, Polymorphic phase transition and excellent piezoelectric performance of (K0.55 Na0.45)0.965 Li0.035 Nb0.80 Ta0.20 O3 lead-free ceramics, Appl Phys Lett, 95, 022909, 10.1063/1.3182725

Zhao, 2008, Effect of Ta content on phase structure and electrical properties of piezoelectric lead-free [(Na0.535 K0.480)0.942 Li0.058](Nb1−x Tax)O3 ceramics, J Am Ceram Soc, 91, 3440, 10.1111/j.1551-2916.2008.02629.x

Kim, 2009, Synthesis and piezoelectric properties of (1−x)(Na0.5 K0.5)NbO3-x(Ba0.95 Sr0.05)TiO3 ceramics, J Electroceram, 23, 502, 10.1007/s10832-008-9519-x

Bafandeh, 2014, Improvement of piezoelectric and ferroelectric properties in (K, Na) NbO3-based ceramics via microwave sintering, J Electroceram, 33, 128, 10.1007/s10832-014-9951-z

Moon, 2013, The effect of pre-annealing on the microstructure of (K,Na)NbO3 ceramics, Ceram Int, 39, 2431, 10.1016/j.ceramint.2012.09.003

Kim, 2014, Effect of Na excess on the dielectric and piezoelectric properties of (Na0.53 K0.47)(Nb0.55 Ta0.45)O3 ceramics, Phys Status Solidi A, 211, 1715, 10.1002/pssa.201330570

Wang, 2013, Temperature-insensitive (K,Na)NbO3-Based lead-free piezoactuator ceramics, Adv Funct Mater, 23, 4079, 10.1002/adfm.201203754

Zhang, 2007, Modified (K0.5 Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range, Appl Phys Lett, 91, 132913, 10.1063/1.2794400

Wu, 2008, CaTiO3-Modified [(K0.5 Na0.5)0.94Li0.06](Nb0.94 Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability, Scr Mater, 59, 750, 10.1016/j.scriptamat.2008.06.011

Wu, 2008, Microstructure and electrical properties of (Li, Ag, Ta, Sb)-modified (K0.50 Na0.50)NbO3 lead-free ceramics with good temperature stability, J Phys D Appl Phys, 41, 125405, 10.1088/0022-3727/41/12/125405

Wang, 2009, Tuning the Orthorhombic− rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate, Phys Status Solidi (RRL), 3, 142, 10.1002/pssr.200903090

Liang, 2011, Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5 Na0.5 NbO3 lead-free ceramics, J Am Ceram Soc, 94, 4317, 10.1111/j.1551-2916.2011.04660.x

Karaki, 2013, Morphotropic phase boundary slope of (K,Na,Li)NbO3-BaZrO3 binary system adjusted using third component (Bi,Na)TiO3 additive, Jpn J Appl Phys, 52, 09KD11, 10.7567/JJAP.52.09KD11

Liang, 2011, Construction of new morphotropic phase boundary in 0.94(K0.42−x Na0.6 BaxNb1−x Zrx)O3-0.06LiSbO3 lead-free piezoelectric ceramics, J Mater Sci, 46, 6771, 10.1007/s10853-011-5650-1

Wang, 2011, Effects of A-site ions on the phase transition temperatures and dielectric properties of (1−x)(Na0.5 K0.5)NbO3-xAZrO3 solid solutions, Jpn J Appl Phys, 50, 09ND10, 10.7567/JJAP.50.09ND10

Liang, 2011, New crystallographic dielectric phase boundary in K0.5 Na0.5 NbO3-based lead-free ceramics, Phys Status Solidi (RRL), 5, 220, 10.1002/pssr.201105131

Zuo, 2011, Rhombohedral−tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics, J Am Ceram Soc, 94, 1467, 10.1111/j.1551-2916.2010.04256.x

Wang, 2013, Rhombohedral-tetragonal phase boundary and electrical properties of new K0.48 Na0.52 Nb0.98 Sb0.02 O3-Bi0.5 Na0.5 ZrO3 lead-free piezoceramics, J Phys D Appl Phys, 46, 495305, 10.1088/0022-3727/46/49/495305

Huang, 2013, Effect of SrZrO3 on phase structure and electrical properties of 0.974(K0.5 Na0.5)NbO3-0.026Bi0.5 K0.5 TiO3 lead-free ceramics, Ceram Int, 40, 2731, 10.1016/j.ceramint.2013.10.048

Liu, 2014, Composition induced Rhombohedral–Tetragonal phase boundary in BaZrO3 modified (K0.445 Na0.50 Li0.055)NbO3 lead-free ceramics, Matter Lett, 120, 275, 10.1016/j.matlet.2014.01.096

Cheng, 2014, Dielectric, ferroelectric, and piezoelectric properties in potassium sodium niobate ceramics with rhombohedral-orthorhombic and orthorhombic-tetragonal phase boundaries, Ceram Int, 40, 5771, 10.1016/j.ceramint.2013.11.016

Li, 2014, Enhancement of piezoelectric properties and temperature stability by forming an MPB in KNN-based lead-free ceramics, J Mater Sci Mater Electron, 25, 1028, 10.1007/s10854-013-1682-4

Wang, 2014, Giant piezoelectricity in potassium-sodium niobate lead-free ceramics, J Am Chem Soc, 136, 2905, 10.1021/ja500076h

Wu, 2014, Giant piezoelectricity of (K,Na)(Nb,Sb)O3-(Bi,Na, K,Pb)ZrO3 ceramics with rhombohedral-tetragonal (R-T) phase boundary, Scr Mater, 88, 41, 10.1016/j.scriptamat.2014.06.001

Wang, 2014, New phase boundary and piezoelectric properties in (K, Na)NbO3 based ceramics, J Alloys Compd, 585, 748, 10.1016/j.jallcom.2013.10.016

Cheng, 2014, Rhombohedral-tetragonal phase coexistence and piezoelectric properties based on potassium-sodium niobate ternary system, J Alloys Compd, 610, 86, 10.1016/j.jallcom.2014.04.194

Wang, 2015, Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary, J Am Ceram Soc, 98, 2177, 10.1111/jace.13604

Vig, 2001

Uchino, 2003, Introduction to piezoelectric actuators and transducers, 1

Raymond, 1996, Defects and charge transport in perovskite ferroelectrics, J Phys Chem Solids, 57, 1507, 10.1016/0022-3697(96)00020-0

Smyth, 1985, Defects and order in perovskite-related oxides, Ann Rev Mater Sci, 15, 329, 10.1146/annurev.ms.15.080185.001553

Ren, 2004, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching, Nat Mater, 3, 91, 10.1038/nmat1051

Granzow, 2006, Deaging of heat-treated iron-doped lead zirconate titanate ceramics, Appl Phys Lett, 89, 262908, 10.1063/1.2425035

Eichel, 2008, Defect-dipole formation in copper-doped PbTiO3 ferroelectrics, Phys Rev Lett, 100, 095504, 10.1103/PhysRevLett.100.095504

Erhart, 2007, Association of oxygen vacancies with impurity metal ions in Lead titanate, Phys Rev B, 76, 174116, 10.1103/PhysRevB.76.174116

Carl, 1977, Electrical after-effects in Pb(Ti, Zr)O3 ceramics, Ferroelectrics, 17, 473, 10.1080/00150197808236770

Arlt, 1988, Internal bias in ferroelectric ceramics: origin and time dependence, Ferroelectrics, 87, 109, 10.1080/00150198808201374

Hall, 1996, Field-induced destabilisation of hard PZT ceramics, Ferroelectrics, 187, 23, 10.1080/00150199608244841

Ren, 2006, Electro-shape-memory effect in ferroelectric martensite, Mater Sci Eng A, 438–440, 1071, 10.1016/j.msea.2006.02.204

Eichel, 2009, Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary, Phys Chem Chem Phys, 11, 8698, 10.1039/b905642d

Park, 2006, Microstructure and piezoelectric properties of 0.95(Na0.5 K0.5)NbO3-0.05BaTiO3 ceramics, Appl Phys Lett, 89, 062906, 10.1063/1.2335816

Gao, 2009, Microstructure and electrical properties of La-modified K0.5 Na0.5 NbO3 lead-free piezoelectric ceramics, J Phys D, 42, 035411, 10.1088/0022-3727/42/3/035411

Rödel, 2009, Perspective on the development of lead-free Piezoceramics, J Am Ceram Soc, 92, 1153, 10.1111/j.1551-2916.2009.03061.x

Herabut, 1997, Processing and electromechanical properties of (Bi0.5 Na0.5)(1−1.5x)LaxTiO3 ceramics, J Am Ceram Soc, 80, 2954, 10.1111/j.1151-2916.1997.tb03219.x

Li, 2011, Large strain response in acceptor- and donor-doped Bi0.5 Na0.5 TiO3-based lead-free ceramics, J Mater Sci, 46, 5702, 10.1007/s10853-011-5523-7

Jo, 2010, Effect of Nb-donor and Fe-acceptor dopants in (Bi1/2 Na1/2)TiO3-BaTiO3-(K0.5 Na0.5)NbO3 lead-free piezoceramics, J Appl Phys, 108, 014110, 10.1063/1.3437645

Jo, 2011, CuO as a sintering additive for (Bi1/2 Na1/2)TiO3-BaTiO3-(K0.5 Na0.5)NbO3 lead-free piezoceramics, J Eur Ceram Soc, 31, 2107, 10.1016/j.jeurceramsoc.2011.05.008

Aksel, 2010, Defect structure and materials ‘Hardening’ in Fe2 O3-doped (Bi0.5 Na0.5)TiO3 ferroelectrics, Appl Phys Lett, 97, 012903, 10.1063/1.3455888

Roberts, 1950, Dielectric properties of Lead zirconate and barium-lead zirconate, J Am Ceram Soc, 33, 63, 10.1111/j.1151-2916.1950.tb14168.x

Sawaguchi, 1956, Double hysteresis loop of (PbλCa1−λ)TiO3 ceramics, J Phys Soc Jpn, 11, 10.1143/JPSJ.11.1298

Nomura, 1955, Dielectric properties of lead strontium titanate, J Phys Soc Jpn, 10, 108, 10.1143/JPSJ.10.108

Shirane, 1952, Ferroelectricity and antiferroelectricity in ceramic PbZrO3 containing Ba or Sr, Phys Rev, 86, 219, 10.1103/PhysRev.86.219

Shirane, 1952, Crystal structure of the ferroelectric phase in PbZrO3 containing Ba or Ti, Phys Rev, 86, 248, 10.1103/PhysRev.86.248.2

Tennery, 1965, A study of the phase transitions in PbZrO3, J Electrochem Soc, 112, 1117, 10.1149/1.2423374

Tennery, 1966, High-temperature phase transitions in PbZrO3, J Am Ceram Soc, 49, 483, 10.1111/j.1151-2916.1966.tb13304.x

Sawaguchi, 1953, Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3, J Phys Soc Jpn, 8, 615, 10.1143/JPSJ.8.615

Marutake, 1955, Elastic properties of Lead zirconate, J Phys Soc Jpn, 10, 424, 10.1143/JPSJ.10.424

Shirane, 1953, Phase transitions in antiferroelectric PbHfO3, Phys Rev, 91, 812, 10.1103/PhysRev.91.812

Ikeda, 1959, A few quaternary systems of perovskite type A2+ B4+ O3 solid solutions, J Phys Soc Jpn, 14, 1286, 10.1143/JPSJ.14.1286

Jaffe, 1955, Properties of piezoelectric ceramics in the solid-solution series lead titanate-lead zirconate-lead oxide: tin oxide and lead titanate-lead hafnate, J Res Natl Bur Stand, 55, 239, 10.6028/jres.055.028

Arlt, 1985, Dielectric properties of fine-grained barium titanate ceramics, J Appl Phys, 58, 1619, 10.1063/1.336051

Uchino, 1989, Dependence of the crystal structure on particle size in barium titanate, J Am Ceram Soc, 72, 1555, 10.1111/j.1151-2916.1989.tb07706.x

Darlington, 1993, The effects of isovalent and non-isovalent impurities on the ferroelectric phase transition in barium titanate, J Phys Condens Matter, 5, 5963, 10.1088/0953-8984/5/32/024

Heaney, 2000, Phase transformations induced by solid solution, Rev Mineral Geochem, 39, 135, 10.2138/rmg.2000.39.06

Soon, 1993, Ferroelectric crossovers triggered by isovalent A-site substitution in Pb0.7 La0.2 TiO3, J Appl Phys, 100, 124101, 10.1063/1.2401026

Devidas, 2009, Dielectric properties of A-and B-site doped BaTiO3: effect of La and Ga, Phys B Condens Matter, 404, 1799

Nomura, 1955, Dielectric properties of titanates containg Sn4+ ions I, J Phys Soc Jpn, 10, 112, 10.1143/JPSJ.10.112

Shvartsman, 2008, Crossover from ferroelectric to relaxor behavior in BaTi SnxO3 solid solutions, Phase Transit, 81, 1013, 10.1080/01411590802457888

Mitsui, 1961, Dielectric and X-Ray studies of CaxBa1−x TiO3 and CaxSr1−x TiO3, Phys Rev, 124, 1354, 10.1103/PhysRev.124.1354

Rushman, 1946, The permittivity of polycrystals of the perovskite type, Trans Faraday Soc, 42, 10.1039/tf946420a231

Shirane, 1951, On the phase transition in barium-lead titanate (1), J Phys Soc Jpn, 6, 274, 10.1143/JPSJ.6.274

Shirane, 1950, Crystal structure of lead titanate and of lead-barium titanate, J Phys Soc Jpn, 5, 453, 10.1143/JPSJ.5.453

Jackson, 1945, High permittivity crystalline aggregates, Nature, 156, 717, 10.1038/156717a0

Shirane, 1951, Volume change at three transitions in BaTiO3 ceramics, J Phys Soc Jpn, 6, 128, 10.1143/JPSJ.6.128

Weaver, 1959, Dielectric properties of single crystals of SrTiO3 at low temperatures, Phys Chem Solids, 11, 274, 10.1016/0022-3697(59)90226-4

Edwin BJ. Poltcrystalline Ceramic Material, US Patent 2,708,243 (1955).

Hennings, 1982, Diffuse ferroelectric phase transitions in Ba(Ti1−y Zry)O3 ceramics, J Am Ceram Soc, 65, 539, 10.1111/j.1151-2916.1982.tb10778.x

Jonker, 1958, The ternary systems BaO-TiO2-SnO2 and BaO-TiO2-ZrO2, J Phys Soc Jpn, 41, 390

Payne, 1965, Dielectric and structural investigations of the system BaTiO3-BaHfO3, J Am Ceram Soc, 48, 413, 10.1111/j.1151-2916.1965.tb14779.x

Jo, 2011, Electric-field-induced volume change and room temperature phase stability of (Bi1/2 Na1/2)TiO3-x mol.% BaTiO3 piezoceramics, Appl Phys Lett, 99, 042901, 10.1063/1.3615675

Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5 Na0.5 TiO3-BaTiO3-K0.5 Na0.5 NbO3. I structure and room temperature properties, J Appl Phys, 103, 034107, 10.1063/1.2838472

Zhang, 2008, Lead-free piezoceramics with giant strain in the system Bi0.5 Na0.5 TiO3-BaTiO3-K0.5 Na0.5 NbO3. II temperature dependent properties, J Appl Phys, 103, 034108, 10.1063/1.2838476

Han, 2012, Coexistence of ergodicity and nonergodicity in LaFeO3-modified Bi1/2(Na0.78 K0.22)1/2 TiO3 relaxors, J Phys Condens Matter, 24, 365901, 10.1088/0953-8984/24/36/365901

Han, 2013, Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82 K0.18)1/2 TiO3 lead-free ceramics, J Appl Phys, 113, 154102, 10.1063/1.4801893

Lee, 2012, Electric field induced polarization and strain of Bi-based ceramic composites, J Appl Phys, 112, 124109, 10.1063/1.4770372

Chiang, 1998, Lead-Free high-strain Single-Crystal piezoelectrics in the alkaline-bismuth-titanate perovskite family, Appl Phys Lett, 73, 3683, 10.1063/1.122862

Farrey, 1998, Growth and characterization of Na1/2 Bi1/2 TiO3-K1/2 Bi1/2 TiO3 BaTiO3 single crystal piezoelectrics, 551

Jones, 2002, Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5 Bi0.5 TiO3, Acta Cryst B, 58, 168, 10.1107/S0108768101020845

Jones, 2002, A structural study of the (Na1−x Kx)0.5 Bi0.5 TiO3 perovskite series as a function of substitution (x) and temperature, Powder Diffr, 17, 301, 10.1154/1.1505047

Jo, 2009, Origin of the large strain response in (K0.5 Na0.5)NbO3-modified (Bi0.5 Na0.5)TiO3-BaTiO3 lead-free piezoceramics, J Appl Phys, 105, 094102, 10.1063/1.3121203

Bell, 1993, Calculations of dielectric properties from the superparaelectric model of relaxors, J Phys Condens Matter, 5, 8773, 10.1088/0953-8984/5/46/015

Glazounov, 1996, Evidence for domain-type dynamics in the ergodic phase of the PbMg1/3 Nb2/3 O3 relaxor ferroelectric, Phys Rev B, 53, 11281, 10.1103/PhysRevB.53.11281

Jo, 2011, On the phase identity and its thermal evolution of lead-free (Bi1/2 Na1/2)TiO3 – 6 mol% BaTiO3, J Appl Phys, 110, 074106, 10.1063/1.3645054

Viehland, 1990, Freezing of the polarization fluctuations in lead magnesium niobate relaxors, J Appl Phys, 68, 2916, 10.1063/1.346425

Viehland, 1991, The glassy behavior of relaxor ferroelectrics, Ferroelectrics, 120, 71, 10.1080/00150199108216802

Bobnar, 1999, Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate, Phys Rev B, 60, 6420, 10.1103/PhysRevB.60.6420

Schaab, 2010, Temperature dependent switching mechanism of (Pb0.92 La0.08)(Zr0.65 Ti0.35)O3 investigated by small and large signal measurements, Appl Phys Lett, 97, 132902, 10.1063/1.3493191

Park, 1997, Electric field induced phase transition of antiferroelectric lead lanthanum zirconate titanate stannate ceramics, J Appl Phys, 82, 1798, 10.1063/1.365982

Wang, 2012, Temperature-dependent properties of (Bi1/2 Na1/2)TiO3-(Bi1/2 K1/2)TiO3-SrTiO3 lead-free piezoceramics, J Am Ceram Soc, 95, 2241, 10.1111/j.1551-2916.2012.05162.x

Seifert, 2010, Temperature-insensitive large strain of (Bi1/2 Na1/2)TiO3-(Bi1/2 K1/2)TiO3-(K0.5 Na0.5)NbO3 lead-free piezoceramics, J Am Ceram Soc, 93, 1392, 10.1111/j.1551-2916.2009.03573.x

Luo, 2011, Bipolar and unipolar fatigue of ferroelectric BNT-based lead-free piezoceramics, J Am Ceram Soc, 94, 529, 10.1111/j.1551-2916.2010.04101.x

Luo, 2011, Effect of ferroelectric long-range order on the unipolar and bipolar electric fatigue in Bi1/2 Na1/2 TiO3-based lead-free piezoceramics, J Am Ceram Soc, 94, 3927, 10.1111/j.1551-2916.2011.04605.x

Sapper, 2014, Cycling stability of lead-free BNT-8BT and BNT-6BT-3KNN multilayer actuators and bulk ceramics, J Eur Ceram Soc, 34, 653, 10.1016/j.jeurceramsoc.2013.09.006

Hiruma, 2008, Large electrostrain near the phase transition temperature of (Bi0.5 Na0.5)TiO3-SrTiO3 ferroelectric ceramics, Appl Phys Lett, 92, 262904, 10.1063/1.2955533

Lee, 2011, Electric field-induced deformation behavior in mixed Bi0.5 Na0.5 TiO3 and Bi0.5(Na0.75 K0.25)0.5 TiO3-BiAlO3, Appl Phys Lett, 99, 062906, 10.1063/1.3621878

Groh, 2014, Relaxor/Ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics, Adv Funct Mater, 24, 356, 10.1002/adfm.201302102

Aman, 2013, Large strain under a low electric field in lead-free bismuth-based piezoelectrics, Appl Phys Lett, 103, 022906, 10.1063/1.4813420

Nguyen, 2012, Enhancement in microstucture and stain properties of Bi1/2 Ba, K1/2 TiO3-based lead-free ceramics by Li-subsitution, J Korean Phys Soc, 61, 895, 10.3938/jkps.61.895

Dittmer, 2011, Relaxor characteristics of morphotropic phase boundary (Bi1/2 Na1/2)TiO3-(Bi1/2 K1/2)TiO3 modified with Bi(Zn1/2 Ti1/2)O3, J Am Ceram Soc, 94, 4283, 10.1111/j.1551-2916.2011.04631.x

Cho, 2014, Phase transition and piezoelectric properties of lead-free (Bi1/2 Na1/2)TiO3-BaTiO3 ceramics, Ceram Int, 40, 8419, 10.1016/j.ceramint.2014.01.051

Cho, 2015, Electric field induced polarization and strain of (Bi1/2 Na1/2)TiO3-BaTiO3 ceramics, Ceram Int, 41, 4789, 10.1016/j.ceramint.2014.12.032

Rahman, 2014, Field induced strain response of lead-free BaZrO3-modified Bi0.5 Na 0.5 TiO3-BaTiO3 ceramics, J Alloys Compd, 593, 97, 10.1016/j.jallcom.2014.01.031

Lee, 2015, High-performance lead-free piezoceramics with high curie temperatures, Adv Mater, 27, 6976, 10.1002/adma.201502424

Rahman, 2015, Effect of donor doping on the ferroelectric and the piezoelectric properties of lead-free 0.97(Bi0.5 Na0.5 Ti1−x Nbx)O3-0.03 BaZrO3 ceramics, J Korean Phys Soc, 67, 1240, 10.3938/jkps.67.1240

Dinh, 2015, Comparison of structural, ferroelectric, and strain properties between A-site donor and acceptor doped Bi1/2(Na0.82 K 0.18)1/2 TiO3 ceramics, Ceram Int, 41, S458, 10.1016/j.ceramint.2015.03.150

Nguyen, 2012, Strain enhancement in Bi1/2(Na0.82 K0.18)1/2 TiO3 lead-free electromechanical ceramics by co-doping with Li and Ta, J Alloys Compd, 511, 237, 10.1016/j.jallcom.2011.09.043

Lee, 2012, Strain enhancement of lead-free Bi1/2(Na0.82 K0.18)1/2 TiO3 ceramics by Sn doping, J Korean Phys Soc, 60, 212, 10.3938/jkps.60.212

Han, 2012, Destabilization of ferroelectric order in bismuth perovskite ceramics by A-site vacancies, Mater Lett, 70, 98, 10.1016/j.matlet.2011.11.068

Acosta, 2014, Temperature- and frequency-dependent properties of the 0.75Bi1/2 Na1/2 TiO3-0.25SrTiO3 lead-free incipient piezoceramic, J Am Ceram Soc, 97, 1937, 10.1111/jace.12884

Choi, 2012, Gigantic electrostrain in duplex structured alkaline niobates, Chem Mater, 24, 3363, 10.1021/cm301324h

Lee, 2006, Characteristic of grain oriented (Bi0.5 Na0.5)TiO3-BaTiO3 ceramics, J Electroceram, 17, 505, 10.1007/s10832-006-7060-3

Dauman, 2013, Bone conduction: an explanation for this phenomenon comprising complex mechanisms, Eur Ann Otorhinolaryngol Head Neck Dis, 130, 209, 10.1016/j.anorl.2012.11.002

Kim MJ. Terminal with a Piezoelectric Speaker System and Method for Operating thereof, US Patent App 14/014,554 (2014).

Ok, 2012, Viscosity sensor using piezoelectric ceramic resonators, Korean Inst Electr Electron Mater Eng, 25, 361

Fähler, 2012, Caloric effects in ferroic materials: new concepts for cooling, Adv Eng Mater, 14, 10, 10.1002/adem.201100178

Ditas, 2014, Lead-Free piezoceramic materials for ultrasonic applications, 1

Hong, 2015, Ring-type rotary ultrasonic motor using lead-free ceramics, J Sens Sci Technol, 24, 228, 10.5369/JSST.2015.24.4.228

Tou, 2009, Properties of (Bi0.5 Na0.5)TiO3-BaTiO3-(Bi0.5 Na0.5)(Mn1/3 Nb2/3)O3 lead-free piezoelectric ceramics and its application to ultrasonic cleaner, Jpn J Appl Phys, 48, 07GM03

Mathieson, 2014, Feasibility of lead-free piezoceramic based power ultrasonic transducers, 2075

Harada S, Aoi K, Hirata T, Ito Y. Nonresonant Type Knock Sensor, US Patent 6,752,005 (2004).

Kang, 2013, Microwave and conventional sintering of lead-free (K, Na) NbO3-based piezoelectric ceramic multilayer actuators, J Ceram Process Res, 14, 230

Nguyen, 2013, Bi-based lead-free ceramic multilayer actuators using AgPd-(Na0.51 K0.47 Li0.02)(Nb0.8 Ta0.2)O3 composite inner electrodes, Sens Actuat A Phys, 200, 107, 10.1016/j.sna.2012.10.036

Han, 2011, Low-firing Pb(Zr,Ti)O3-based multilayer ceramic actuators using Ag inner electrode, Trans Electr Electron Mater, 12, 249, 10.4313/TEEM.2011.12.6.249