Maron, 2000, N. Engl. J. Med., 342, 365, 10.1056/NEJM200002103420601
Song, 2005, IEEE Trans. Neur. Sys. Reh., 13, 220, 10.1109/TNSRE.2005.848337
Kim, 2015, Nano Energy, 14, 87, 10.1016/j.nanoen.2015.01.004
Jung, 2011, ACS Nano, 5, 10041, 10.1021/nn2039033
Yuan, 2014, Adv. Mater., 26, 7432, 10.1002/adma.201402868
Briscoe, 2015, Nano Energy, 14, 15, 10.1016/j.nanoen.2014.11.059
Park, 2012, Adv. Mater., 24, 2937, 10.1002/adma.201290128
Yan, 2005, Adv. Mater., 17, 1261, 10.1002/adma.200401860
Takenaka, 2005, J. Eur. Ceram. Soc., 25, 2693, 10.1016/j.jeurceramsoc.2005.03.125
Long, 2012, CrystEngComm, 14, 7201, 10.1039/c2ce25718a
Liu, 2012, J. Electroceram., 28, 144, 10.1007/s10832-012-9695-6
Naresh, 2014, ACS Appl. Mater. Interfaces, 6, 21000, 10.1021/am505767c
Liu, 2013, J. Appl. Phys., 114, 234101, 10.1063/1.4849055
Bai, 2015, Sci. Rep., 5, 17846, 10.1038/srep17846
Zhao, 2016, J. Alloys Compd., 675, 441, 10.1016/j.jallcom.2016.03.017
Ti, 2015, Ceram. Int., 41, S453, 10.1016/j.ceramint.2015.03.157
Eerenstein, 1999, Nature, 401, 682, 10.1038/44352
Zhang, 2015, ACS Nano, 9, 7164, 10.1021/acsnano.5b03371
Andrew, 2014, Scr. Mater., 74, 38, 10.1016/j.scriptamat.2013.09.023
Starr, 2013, J. Mater. Chem. C, 1, 2529, 10.1039/c3tc00949a
Jeong, 2014, Adv. Funct. Mater., 24, 2620, 10.1002/adfm.201303484
Katoh, 2004, Biomaterials, 25, 2265, 10.1016/j.biomaterials.2003.09.021
Reichl, 2009, Biomaterials, 30, 6854, 10.1016/j.biomaterials.2009.08.051
Hill, 2010, Biomaterials, 31, 585, 10.1016/j.biomaterials.2009.09.076
Lu, 2010, Bioresour. Technol., 101, 4703, 10.1016/j.biortech.2010.01.110
He, 2010, J. Mater. Chem., 20, 10107, 10.1039/c0jm03068f
Dickerson, 2013, J. Mater. Chem. B, 1, 5505, 10.1039/c3tb20896f
Rouse, 2010, Materials, 3, 999, 10.3390/ma3020999
Sando, 2010, J. Biomed. Mater. Res., Part A, 95, 901, 10.1002/jbm.a.32913
Zoccola, 2008, Biomacromolecules, 9, 2819, 10.1021/bm800579a
Reichl, 2011, Biomaterials, 32, 3375, 10.1016/j.biomaterials.2011.01.052
A. C.
Larson
and R. B. VonDreele, General Structure Analysis System (GSAS), LANL Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM, 2000
Long, 2012, Dalton Trans., 41, 11046, 10.1039/c2dt31085f
Mao, 2013, Appl. Phys. Lett., 102, 072904, 10.1063/1.4793305
Kim, 2014, Adv. Funct. Mater., 24, 6262, 10.1002/adfm.201401599
Withers, 1991, J. Solid State Chem., 94, 404, 10.1016/0022-4596(91)90207-X
Shimakawa, 1999, Appl. Phys. Lett., 74, 1904, 10.1063/1.123708
Lee, 2011, Phys. Rev. B: Condens. Matter Mater. Phys., 84, 094112, 10.1103/PhysRevB.84.094112
Dubourdieu, 2013, Nat. Nanotechnol., 8, 748, 10.1038/nnano.2013.192
Liu, 2012, Phys. Rev. Lett., 108, 078103, 10.1103/PhysRevLett.108.078103
Yang, 2008, Appl. Phys. Lett., 92, 012907, 10.1063/1.2830663
Sá, 2013, J. Phys. D: Appl. Phys., 46, 105304, 10.1088/0022-3727/46/10/105304
Huang, 2011, Phys. Status Solidi A, 208, 1047, 10.1002/pssa.201000080
Jalalian, 2014, Appl. Phys. Lett., 104, 103112, 10.1063/1.4867013
Chen, 2010, Nano Lett., 10, 2133, 10.1021/nl100812k
Zhang, 2015, ACS Nano, 9, 7164, 10.1021/acsnano.5b03371
Shin, 2013, J. Mater. Chem. C, 1, 8103, 10.1039/c3tc31664e
Fang, 2016, J. Mater. Chem. C, 4, 630, 10.1039/C5TC03342J
Hinchet, 2014, Adv. Funct. Mater., 24, 971, 10.1002/adfm.201302157
Gupta, 2016, ACS Appl. Mater. Interfaces, 8, 1766, 10.1021/acsami.5b09485
Lee, 2014, Adv. Funct. Mater., 24, 37, 10.1002/adfm.201301379
Yun, 2014, Nanoscale Res. Lett., 9, 4, 10.1186/1556-276X-9-4
Zhao, 2015, Nano Energy, 11, 719, 10.1016/j.nanoen.2014.11.061