Lead‐Free Hybrid Perovskite Absorbers for Viable Application: Can We Eat the Cake and Have It too?

Advanced Science - Tập 5 Số 2 - 2018
Lusheng Liang1,2, Peng Gao1,2
1CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
2Laboratory of Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, China

Tóm tắt

AbstractMany years since the booming of research on perovskite solar cells (PSCs), the hybrid perovskite materials developed for photovoltaic application form three main categories since 2009: (i) high‐performance unstable lead‐containing perovskites, (ii) low‐performance lead‐free perovskites, and (iii) moderate performance and stable lead‐containing perovskites. The search for alternative materials to replace lead leads to the second group of perovskite materials. To date, a number of these compounds have been synthesized and applied in photovoltaic devices. Here, lead‐free hybrid light absorbers used in PV devices are focused and their recent developments in related solar cell applications are reviewed comprehensively. In the first part, group 14 metals (Sn and Ge)‐based perovskites are introduced with more emphasis on the optimization of Sn‐based PSCs. Then concerns on halide hybrids of group 15 metals (Bi and Sb) are raised, which are mainly perovskite derivatives. At the same time, transition metal Cu‐based perovskites are also referred. In the end, an outlook is given on the design strategy of lead‐free halide hybrid absorbers for photovoltaic applications. It is believed that this timely review can represent our unique view of the field and shed some light on the direction of development of such promising materials.

Từ khóa


Tài liệu tham khảo

10.1021/ja809598r

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg October2017.

10.1039/C4EE00942H

10.1016/j.solener.2016.02.015

10.1021/ja5033259

10.1002/adma.201401641

10.1021/jacs.6b08337

10.1038/nenergy.2017.18

Ohishi Y., 2016, AIP Conf. Proc, 20020

10.1039/C6CP02105K

10.1039/C6TC00650G

10.1039/C6EE03201J

10.1002/adma.201600626

10.1039/C6EE01969B

10.1021/acsenergylett.6b00241

10.1002/adma.201502597

10.1016/0921-4526(94)91130-4

10.1016/0022-2313(94)90145-7

10.1038/ncomms4586

10.1126/science.1243167

10.1039/C4EE03907F

10.1002/adma.201305172

10.1038/ncomms6784

10.1021/jz401527q

10.1126/science.aaa9272

10.1038/nmat4301

10.1021/jacs.7b02120

10.1002/advs.201700204

10.1002/anie.201406466

10.1021/jacs.5b03796

10.1021/acs.chemmater.6b00847

10.1021/jacs.5b11740

10.1021/ja00006a076

10.1038/nature18306

10.1021/acs.chemmater.6b03310

10.1021/acs.chemmater.5b03147

10.1039/C6SE00061D

10.1021/jacs.5b13294

10.1021/acs.inorgchem.5b01896

10.1039/C5TA05741H

10.1021/jacs.6b10734

10.1038/nenergy.2016.81

10.1021/jacs.5b11824

10.1126/science.aan2301

10.1126/science.aah5557

10.1039/C4EE01076K

10.1021/jacs.5b06658

10.1039/C6TC05069G

10.1021/acs.jpclett.6b00118

10.1039/C6RA19476A

10.1038/nphoton.2014.82

10.1039/C5RA21291J

10.1021/acsenergylett.6b00513

10.1039/C6TA07712A

Ke W., 2017, J. Am. Chem. Soc.

10.1002/adma.201602992

10.1021/jacs.6b08790

10.1021/jacs.6b00142

10.1039/C5TA00190K

10.1007/s12274-016-1051-8

10.1039/C7TA01668A

10.1126/sciadv.1701293

10.1021/acsenergylett.7b00202

10.1021/jacs.7b01815

10.1021/acsenergylett.7b00171

10.1038/nenergy.2016.178

10.1002/aenm.201601130

10.1039/C5TA02950C

10.1002/adma.201401991

10.1021/jp5126624

10.1063/1.4748888

10.1038/nature11067

10.1039/C6TA08332C

10.1021/acsenergylett.6b00402

10.1016/j.nanoen.2016.09.009

10.1016/j.solmat.2016.09.022

10.1002/pssr.201600166

10.1021/ja508464w

10.1021/acs.chemmater.6b00433

10.1039/C7SE00100B

10.1021/acs.jpcc.6b02175

10.1007/s12274-016-1177-8

10.1021/acs.jpclett.6b02578

10.1002/slct.201700025

10.1039/C6RA28190G

10.1021/acsami.6b02843

10.1007/s12274-015-0948-y

10.1002/adma.201501978

10.1039/C6TA04657F

10.1016/j.matlet.2017.01.047

10.1016/j.solmat.2016.01.035

10.1002/chem.201505055

10.1021/acs.chemmater.6b02315

10.1016/j.jallcom.2017.01.169

10.1021/acs.jpcc.6b09567

10.1039/C6QI00260A

10.1016/j.jlumin.2015.01.010

Belkyal I., 1997, Zeitschrift für Krist. – Cryst. Mater., 212, 139, 10.1524/zkri.1997.212.2.139

10.1039/C6SE00061D

10.1021/acs.jpclett.6b01452

10.1021/acs.chemmater.7b01017

10.1002/anie.201608160

10.1063/1.4943680

10.1039/C6MH00053C

10.1039/C6TA05817E

10.1021/acs.chemmater.6b03944

10.1002/pssb.2221150130

10.1021/acs.jpclett.6b01041

10.1021/acs.chemmater.5b04231

10.1039/C7TA06816F

10.1021/jacs.7b01629

10.1002/anie.201703970

10.1021/acs.jpclett.6b02682

10.1002/anie.201603608

10.1002/cssc.201700634

10.1002/ange.201702265

10.1021/acsenergylett.6b00170

10.1039/C7TA06679A

10.1021/acs.chemmater.5b01989

10.1002/ejic.201700277

10.1021/jacs.7b04119

10.1016/j.synthmet.2015.07.013

10.1021/acs.jpclett.7b00086

Nordberg G. F., 2015, Handbook on the Toxicology of Metals

10.1016/0021-9681(61)90139-4

Patrick L., 2006, Altern. Med. Rev., 11, 2

10.1146/annurev.med.55.091902.103653

Warniment C., 2010, Am. Fam. Physician, 81, 751

Khriplovich I. B., 1998, Surv. High Energy Phys., 14, 145

10.1016/j.jlumin.2011.09.006

10.1103/PhysRevB.88.165203

10.1021/ic401215x

10.1002/anie.201511792

10.1021/jacs.6b09257

10.1021/acs.jpclett.6b00118

10.1021/jp411112k

10.1021/acs.jpclett.5b00380

10.1002/adfm.201505127

10.1039/C7TA02662E

10.1039/C5TA06398A

10.1021/ja301539s

10.1002/adfm.201604818

10.1021/acs.inorgchem.6b02318

10.1016/j.matlet.2017.04.046

10.1039/C5CP03102H

Uversky V. N., 2013, Encyclopedia of Metalloproteins

10.1039/C3TA14132B

10.1039/C6TA04685A

10.1021/jacs.7b04219

10.1039/c0dt01601b

10.1021/cm503122j

10.1002/adma.201600265

10.1186/s11671-017-2117-6

10.1016/j.matlet.2016.07.048

10.1016/j.nanoen.2017.02.040

10.1021/cm970568f

10.1021/jp502696w

10.1002/adma.201400231

10.1038/nchem.2324

10.1038/nmat4014

10.1002/anie.201405334

10.1039/C6TA00230G

10.1021/acsami.6b05862

10.1002/adfm.201304022

10.1002/anie.201504379

10.1038/nature12509

10.1021/ja0287478

10.1039/C5TA00477B

10.1038/nature14133

10.1021/jacs.5b04930

10.1021/acs.jpclett.6b02030

10.1039/C4EE02539C

Weiss M., 2016, Phys. Status Solidi B, 213, 975, 10.1002/pssa.201532594

10.1021/ja411509g

10.1246/cl.150143

10.1021/nl500390f

Serfontein W. J., 1979, Res. Commun. Chem. Pathol. Pharmacol., 26, 391

10.1007/BF03259915

10.1046/j.1365-2036.1996.22163000.x

10.1038/nchem.609

10.1016/S0040-4020(02)01000-1

10.1080/00150199008018741

10.1039/C5CC10455F

10.1080/01411599008206873

10.1038/nphoton.2014.134

10.1126/science.aaa2725

10.1007/s12274-016-1177-8

10.1016/j.nanoen.2014.08.015

10.1038/srep04467

Ikeda M., 2004, IEEE Nucl. Sci. Symp. Conf. Rec, 4520

10.1021/acs.jpclett.5b02022

10.1063/1.4813486

10.1063/1.4932129

10.1021/acs.jpclett.7b01381

10.1006/jssc.2000.8886

Mousdis G. A., 1998, Z. Naturforsch, 53, 927, 10.1515/znb-1998-0825

10.1021/ic000622l

10.1039/C6TA00517A

10.1021/acs.inorgchem.6b01571

10.1021/acsami.7b04616

10.1557/mrc.2015.26

10.1021/acs.jpclett.6b00376

10.1039/C6MH00519E

10.1021/jacs.6b09645

10.1021/jacs.7b02227

10.1021/acs.jpclett.7b01584

10.3390/ijerph7124267

10.1002/ardp.201500312

Du M. H., 2010, Phys. Rev. B – Condens. Matter Mater. Phys., 82, 45203, 10.1103/PhysRevB.82.045203

10.1016/0924-2031(94)85006-2

10.1063/1.93168

10.1063/1.3358121

10.1103/PhysRevB.83.115209

10.1063/1.4864778

10.1073/pnas.98.3.1206

10.1103/PhysRev.102.705

10.1063/1.3204695

10.1016/j.jpcs.2016.02.010

10.1364/OE.22.000A80

10.1038/nature12622

10.1038/nphoton.2014.255

Du H., 2016, Chinese Phys. B, 25, 1

Hossain M., 2015, TMS Middle East ‐ Mediterr. Mater. Congr. Energy Infrastruct. Syst. (MEMA 2015), 335

10.1016/S0278-6915(03)00217-5

10.1038/srep18721

10.1021/acs.analchem.6b03515

10.1021/acs.jpclett.7b01952