Lead‐Free Halide Double Perovskite Nanocrystals for Light‐Emitting Applications: Strategies for Boosting Efficiency and Stability

Advanced Science - Tập 8 Số 7 - 2021
Huidong Tang1, Yanqiao Xu1, Xiaobo Hu2, Qing Hu1, Ting Chen3,1, Weihui Jiang3,1, Lianjun Wang2,3, Wan Jiang2,3
1School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333001 P. R. China
2Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai, 201620 P. R. China
3National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen, 333001 P. R. China

Tóm tắt

AbstractLead‐free halide double perovskite (HDP) nanocrystals are considered as one of the most promising alternatives to the lead halide perovskite nanocrystals due to their unique characteristics of nontoxicity, robust intrinsic thermodynamic stability, rich and tunable optoelectronic properties. Although lead‐free HDP variants with highly efficient emission are synthesized and characterized, the photoluminescent (PL) properties of colloidal HDP nanocrystals still have enormous challenges for application in light‐emitting diode (LED) devices due to their intrinsic and surface defects, indirect band, and disallowable optical transitions. Herein, recent progress on the synthetic strategies, ligands passivation, and metal doping/alloying for boosting efficiency and stability of HDP nanocrystals is comprehensive summarized. It begins by introducing the crystalline structure, electronic structure, and PL mechanism of lead‐free HDPs. Next, the limiting factors on PL properties and origins of instability are analyzed, followed by highlighting the effects of synthesis strategies, ligands passivation, and metal doping/alloying on the PL properties and stability of the HDPs. Then, their preliminary applications for LED devices are emphasized. Finally, the challenges and prospects concerning the development of highly efficient and stable HDP nanocrystals‐based LED devices in the future are proposed.

Từ khóa


Tài liệu tham khảo

10.1002/adfm.202000863

10.1002/aenm.202000501

10.1002/adfm.201605088

10.1002/adma.201903717

10.1021/acsenergylett.0c00931

10.1038/s41467-020-17633-3

10.1016/j.matlet.2019.126630

10.1021/acsnano.9b00911

Liu R., 2020, Adv. Opt. Mater., 8, 1772

10.1038/s41563-018-0018-4

Chen T., 2020, Nanoscale, 12, 9580

10.1021/acsami.9b01930

10.1021/acs.nanolett.5b02404

10.1016/j.nanoen.2016.08.062

10.1002/ange.201900374

10.1021/jacs.7b10647

10.1021/acsami.7b10612

10.1021/acs.jpclett.6b02800

10.1021/acs.nanolett.6b01168

10.1039/C7SC01219E

10.1002/adfm.201800283

10.1021/acs.chemmater.8b01235

10.1039/C9CP04033A

10.1021/nl5048779

10.1016/j.cej.2019.122255

10.1002/anie.201603698

10.1002/adom.201900276

10.1039/C7CC04862A

10.1016/j.matt.2020.05.004

10.1021/acs.chemrev.8b00644

Tan Z. K., 2014, Nat. Nanotechnol., 9, 692

10.1038/nphoton.2016.269

Han D., 2018, ACS Nano, 12, 8816

10.1002/adfm.201807284

10.1038/s41586-018-0576-2

10.1038/s41566-018-0283-4

10.1002/adfm.201909754

10.1016/j.scib.2020.08.025

10.1021/acsenergylett.7b00547

10.1016/j.jallcom.2019.152693

10.1021/jacs.5b13470

10.1039/C8RA01150H

10.1002/adma.201901716

Huang J., 2020, Nano Lett., 20, 3739

Zhang J., 2017, ACS Nano, 11, 9302

10.1002/anie.201704739

10.1002/advs.202000195

10.1021/acs.chemmater.0c00280

10.1002/adma.201803792

10.1002/solr.201900148

10.1021/acs.nanolett.7b04659

10.1002/anie.201800660

10.1039/C9TA13870F

10.1002/advs.201700759

Gao W., 2018, ChemPhysChem, 19, 1700

10.1021/acsenergylett.7b01167

10.1021/acsenergylett.0c01020

10.1021/acs.chemmater.9b02973

10.1002/anie.201900658

10.1016/j.apcatb.2019.118399

10.1002/adom.201801732

Lin W., 2020, ACS Appl. Mater. Interfaces, 12, 43975

10.1039/D0CC01847C

10.3390/ma12091501

10.1002/adfm.201801131

10.1007/s12200-019-0907-4

10.1002/adma.202002443

10.1002/adom.202000779

10.1021/acs.chemmater.8b05280

10.1002/adom.201801435

10.1021/acs.chemmater.0c01004

10.1021/jacs.0c02198

10.1039/C9QI00905A

10.1038/s41586-018-0691-0

10.1002/adom.201901098

Wang C.‐Y., 2020, Chem. Mater., 32, 7821

Hu M., 2019, Opt. Lett., 44, 4760

10.1016/j.matt.2020.05.018

10.1021/acs.chemmater.0c00454

10.1002/aenm.201803150

10.1007/s40820-019-0244-6

10.1021/acsami.9b08407

10.1016/j.cej.2020.124757

10.1002/chem.202000788

10.1039/C9NR01031A

10.1002/asia.201901510

Liu Y., Angew. Chem., Int. Ed.

10.1002/anie.201904862

10.1021/jacs.5b13294

10.1039/C7TA04690A

10.1016/j.commatsci.2017.09.014

10.1039/C7MH00239D

10.1002/smtd.201900426

10.1021/acs.chemmater.8b01549

10.1002/adfm.201800332

10.1002/asia.201800635

10.1016/j.solmat.2018.12.031

Tang G., 2018, J. Phys. Chem. Lett., 9, 48

10.1016/j.joule.2018.06.017

10.1039/C7TA09713A

10.1002/aenm.201701136

10.1021/acsenergylett.7b00191

Xiao Z., 2017, J. Am. Chem. Soc., 139, 6057

10.1021/acs.jpclett.7b02949

10.1088/1361-648X/ab32a5

10.1021/acs.chemmater.5b04231

Xiao Z., 2016, ChemSusChem, 18, 1864

Volonakis G., 2017, J. Phys. Chem. Lett., 8, 778

Meng W., 2017, J. Phys. Chem. Lett., 8, 3007

10.1039/C9TC02402F

10.1103/PhysRevB.51.10619

Li S., 2019, J. Phys. Chem. Lett., 10, 2007

10.1016/j.scib.2020.03.010

10.1002/ijch.201900009

Zhang Q., 2018, ACS Cent. Sci., 4, 679

10.1021/acs.chemmater.0c01735

10.1021/acs.chemmater.6b01329

10.1021/acs.chemmater.7b02803

Jing Y., 2019, J. Phys. Chem. Lett., 10, 7444

10.1002/smll.201703762

10.1002/anie.201811610

10.1021/acs.chemmater.9b00410

10.1021/acs.nanolett.8b00560

10.1021/acs.jpclett.9b02168

10.1016/j.cej.2020.125367

Lee W., 2020, Chem. Mater., 32, 6874

10.1021/jacs.8b07983

10.1021/acs.chemmater.8b04202

Cai T., 2020, J. Am. Chem. Soc., 142, 11936

10.1002/anie.201909525

Zhou W., 2020, J. Phys. Chem. Lett., 11, 6467

10.1002/adma.201700775

10.1002/smll.201603996

10.1002/adfm.201704446

10.1016/j.mattod.2019.06.007

10.1021/jacs.8b07424

10.1039/C9CC07397C

10.1007/s11051-020-04787-w

Wang X. D., 2019, Nanoscale, 11, 5187

Zheng X., 2019, J. Phys. Chem. Lett., 10, 2640

10.1002/admi.201701662

10.1088/1361-6528/ab13f6

10.1002/ijch.201900031

10.1016/j.mtnano.2019.100036

10.1039/C9CS00790C

10.1002/adom.201901919

Zhu D., 2020, ACS Energy Lett., 5, 1847

10.1002/adfm.202000653

10.1002/anie.201703970

10.1021/acs.jpclett.0c00206

10.1103/PhysRevApplied.10.041001

10.1021/acs.jpcc.9b02456

10.1021/acs.jpcc.8b12146

10.1021/acsenergylett.9b01274

10.1002/smll.201903496

Xia Z., 2020, Angew. Chem., Int. Ed., 59, 11640

10.1002/anie.202002721

10.1021/acsami.9b02367

Han P., 2020, ACS Cent. Sci., 6, 572

10.1002/smll.202002547

Liao Q., 2020, J. Phys. Chem. Lett., 11, 8398

10.1021/acs.chemmater.8b03755

Liu S., 2020, Angew. Chem., Int. Ed., 59, 21929

10.1080/15980316.2019.1655493

10.1007/BF01507527

10.1021/ja01379a006

Volonakis G., 2017, J. Phys. Chem. Lett., 8, 3924

Zhao X. G., 2017, J. Am. Chem. Soc., 139, 2638

Xiao Z., 2017, Angew. Chem., Int. Ed., 129, 12279

10.1002/adfm.201807280

10.1039/C9CP05342E

10.1063/1.5027414

Hu Y. Q., 2019, Inorg. Chem., 58, 8505

10.1016/j.jallcom.2020.156930

Zeng R., 2020, J. Phys. Chem. Lett., 11, 2061

10.1038/s41566-017-0012-4

10.1038/s41467-019-09968-3

10.1002/adfm.202002342

10.1039/C9NR03533H

10.1016/j.cej.2019.01.152

10.1038/s41563-020-0784-7

10.1021/acs.inorgchem.9b02299

10.1039/D0TC01037E

10.1016/j.jlumin.2020.117586

10.1038/s41598-019-55228-1

10.1016/j.dyepig.2018.01.045

10.1021/acsami.6b08528

10.1039/C7TC03774K

10.1021/acsmaterialslett.0c00359