Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Chiết xuất nhôm từ chất thải than bằng phương pháp kích hoạt cơ nhiệt
Tóm tắt
Quá trình kích hoạt chất thải than (CS) nhằm thu hồi nhôm như một sản phẩm có giá trị cao đã được nghiên cứu. Chất thải than đã được xác định đặc trưng trước bằng phổ huỳnh quang tia X (XRF), nhiễu xạ tia X (XRD) và phân tích nhiệt trọng lượng - nhiệt vi sai (TGA-DSC) để xác định thành phần hóa học và khoáng vật của chất thải than. Sau đó, một phương pháp kích hoạt cơ nhiệt đã được áp dụng để tăng cường hoạt tính nhôm trong chất thải than. Hơn 95% nhôm trong chất thải than có thể được chiết xuất bằng phương pháp kích hoạt này. Quá trình kích hoạt cơ nhiệt đã thúc đẩy sự phá hủy cấu trúc kaolinite và cản trở sự hình thành γ-Al2O3 không kết tinh. Điều này dẫn đến hoạt tính rửa nhôm cao trong chất thải than đã được kích hoạt cơ nhiệt.
Từ khóa
#kích hoạt cơ nhiệt #chiết xuất nhôm #chất thải than #hoạt tính nhôm #phân tích nhiệtTài liệu tham khảo
Liu H B, Liu Z L. Recycling utilization patterns of coal mining waste in China. Resources, Conservation and Recycling, 2010, 54(12): 1331–1340
Livingston W R, Rogers D A, Chapman R J, Bailey N T. The use of coal spoils as feed materials for alumina recovery by acid-leaching routes. 1. The suitability and variability of the feed materials. Hydrometallurgy, 1983, 10(1): 79–96
Livingston WR, Rogers D A, Chapman R J, Gregory A G, Bailey N T. The use of coal spoils as feed materials for alumina recovery by acid-leaching routes. 2. The effect of the calcination conditions on the leaching properties of the colliery spoil. Hydrometallurgy, 1983, 10(1): 97–109
Livingston W R, Rogers D A, Chapman R J, Bailey N T. The use of coal spoils as feed materials for alumina recovery by acid-leaching routes. 3. The effect of the leaching conditions on the extraction of aluminium and iron from a fluidised bed ash. Hydrometallurgy, 1985, 13(3): 283–291
Mahi P, Bailey N T. The use of coal spoils as feed materials for alumina recovery by acid-leaching routes. 4. The extraction of iron from aluminiferous solutions with amines, in particular Alamine 336. Hydrometallurgy, 1985, 13(3): 293–304
Bailey N T, Chapman R J. The use of coal spoils as feed materials for alumina recovery by acid-leaching routes. 5. The effect of fluoride additions on the extraction of aluminum with hydrochloric acid. Hydrometallurgy, 1987, 18(3): 337–350
Mahi P, Livingston W R, Rogers D A, Chapman R J, Bailey N T. The use of coal spoils as feed materials for alumina recovery by acid-leaching routes. Part 6: The purification and crystallization of chloride and chloride/fluoride leach liquors by HCl gas precipition. Hydrometallurgy, 1991, 26(1): 75–91
Sun X X, Sun Y Z, Yu J G. Cooling crystallization of aluminum sulfate in pure water. Journal of Crystal Growth, 2015, 419: 94–101
Sun X X, Sun Y Z, Yu J G. Crystal structure of aluminum sulfate hexadecahydrate and its morphology. Crystal Research and Technology, 2015, 50(4): 293–298
Aglietti E F, Porto-Lopez J M, Pereira E. Mechanochemical effects in kaolinite grinding. I. Textural and physicochemical aspects. International Journal of Mineral Processing, 1986, 16(1–2): 125–133
Aglietti E F, Porto-Lopez J M, Pereira E. Mechanochemical effects in kaolinite grinding. II. Structural aspects. International Journal of Mineral Processing, 1986, 16(1–2): 135–146
Qiao X C, Si P, Yu J G. A Systematic investigation into the extraction of aluminum from coal spoil through kaolinite. Environmental Science & Technology, 2008, 42(22): 8541–8546
Cheng F, Cui L, Miller J D, Wang X. Aluminum leaching from calcined coal waste using hydrochloric acid solution. Mineral Processing and Extractive Metallurgy Review, 2012, 33(6): 391–403
Guo Y X, Li Y Y, Cheng F Q, Wang M, Wang X M. Role of additives in improved thermal activation of coal fly ash for alumina extraction. Fuel Processing Technology, 2013, 110: 114–121
Li C, Wan J H, Sun H H, Li L T. Investigation on the activation of coal gangue by a new compound method. Journal of Hazardous Materials, 2010, 179(1–3): 515–520
Shen X. Differential Thermal and Thermogravimetric Analysis and Non-isothermal Kinetics of Solid. China: Metallurgical Industry Press, 1995, 22–96 (in Chinese)
Mullin J W. Crystallization. 3rd ed. UK: Butterworth-Heinemann, 2000, 78–80
Qiu X H, Zhang Q J. Mechanochemical changes of kaolinite during dry grinding. Journal of the Chinese Ceramic Society, 1991, 19(5): 448–455
Young R A, Hewat AW. Verification of the triclinic crystal structure of kaolinite. Clays and Clay Minerals, 1988, 36(3): 225–232
Wong S F. Fourier Translation Infrared Spectroscopy. Beijing: Chemical Industry Press, 2010, 328–331 (in Chinese)
Percival H J, Duncan J F, Foster P K. Interpretation of the kaolinitemullite reaction sequence from infrared absorption spectra. Journal of the American Ceramic Society, 1974, 57(2): 57–61
Frost R L, Vassallo A M. The dihydroxylation of the kaolinite clay minerals using infrared emission spectroscopy. Clays and Clay Minerals, 1996, 44(5): 635–651
Mukherjee S, Srivastava S K. Minerals transformations in northeastern region coals of India on heat treatment. Energy & Fuels, 2006, 20(3): 1089–1096
Si P. Activation technology for aluminum recovery from coal spoil through acid leaching route. Dissertation for the Doctoral Degree. Shanghai: East China University of Science and Technology, 2011, 68–70