LeGOO: An Expertized Knowledge Database for the Model Legume Medicago truncatula
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alves-Carvalho, 2015, Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species, Plant J., 84, 1, 10.1111/tpj.12967
Benedito, 2008, A gene expression atlas of the model legume Medicago truncatula, Plant J, 55, 504, 10.1111/j.1365-313X.2008.03519.x
Cheng, 2014, An efficient reverse genetics platform in the model legume Medicago truncatula, New Phytol., 201, 1065, 10.1111/nph.12575
Cheng, 2011, Reverse genetics in Medicago truncatula using Tnt1 insertion mutants, Methods Mol. Biol, 678, 179, 10.1007/978-1-60761-682-5_13
Dai, 2016, HRGRN: a graph search-empowered integrative database of Arabidopsis signaling transduction, metabolism and gene regulation networks, Plant Cell Physiol., 57, e12, 10.1093/pcp/pcv200
Dash, 2016, Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family, Nucleic Acids Res., 44, D1181, 10.1093/nar/gkv1159
de Bang, 2017, Genome-wide identification of Medicago peptides involved in macronutrient responses and nodulation, Plant Physiol., 175, 1669, 10.1104/pp.17.01096
Eilbeck, 2005, The sequence ontology: a tool for the unification of genome annotations, Genome Biol., 6, R44, 10.1186/gb-2005-6-5-r44
Emms, 2015, OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy, Genome Biol., 16, 157, 10.1186/s13059-015-0721-2
Franz, 2016, Cytoscape.js: a graph theory library for visualisation and analysis, Bioinformatics, 32, 309, 10.1093/bioinformatics/btv557
Godiard, 2007, Identification of new potential regulators of the Medicago truncatula–Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach, Mol. Plant Micobe Interact., 20, 321, 10.1094/MPMI-20-3-0321
Harris, 2004, The gene ontology (GO) database and informatics resource, Nucleic Acids Res, 32, D258, 10.1093/nar/gkh036
He, 2009, The Medicago truncatula gene expression atlas web server, BMC Bioinformatics, 10, 441, 10.1186/1471-2105-10-441
Hohnjec, 2005, Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza, Plant Physiol., 137, 1283, 10.1104/pp.104.056572
Jardinaud, 2016, A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by nod factors in the Medicago truncatula root epidermis, Plant Physiol., 171, 2256, 10.1104/pp.16.00711
Journet, 2002, Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis, Nucleic Acids Res, 30, 5579, 10.1093/nar/gkf685
Kang, 2016, A snapshot of functional genetic studies in Medicago truncatula, Front. Plant Sci, 7, 1175, 10.3389/fpls.2016.01175
Kang, 2015, Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula, Plant. Cell Environ., 38, 1997, 10.1111/pce.12520
Kawahara, 2016, TENOR: database for comprehensive mRNA-Seq experiments in rice, Plant Cell Physiol., 57, e7, 10.1093/pcp/pcv179
Krishnakumar, 2015, Araport: the Arabidopsis information portal, Nucleic Acids Res, 43, D1003, 10.1093/nar/gku1200
Krishnakumar, 2015, MTGD: the Medicago truncatula genome database, Plant Cell Physiol, 56, e1, 10.1093/pcp/pcu179
Kudo, 2017, TOMATOMICS: a web database for integrated omics information in tomato, Plant Cell Physiol, 58, e8
Kudo, 2017, PlantExpress: a database integrating OryzaExpress and ArthaExpress for single-species and cross-species gene expression network analyses with microarray-based transcriptome data, Plant Cell Physiol, 58, e1, 10.1093/pcp/pcw208
Kuster, 2004, Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula, J. Biotechnol, 108, 95, 10.1016/j.jbiotec.2003.11.011
Miller, 2013, Proceedings of the Southern Association for Information Systems Conference, 141
Moreau, 2014, The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction, New Phytol., 201, 1343, 10.1111/nph.12636
Pecrix, 2018, Whole-genome landscape of Medicago truncatula symbiotic genes, Nat. Plants, 4, 1017, 10.1038/s41477-018-0286-7
Quinlan, 2010, BEDTools: a flexible suite of utilities for comparing genomic features, Bioinformatics, 26, 841, 10.1093/bioinformatics/btq033
Roux, 2014, An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, Plant J., 77, 817, 10.1111/tpj.12442
Tadege, 2008, Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula, Plant J., 54, 335, 10.1111/j.1365-313X.2008.03418.x
Tang, 2014, An improved genome release (version Mt4.0) for the model legume Medicago truncatula, BMC Genomics, 15, 312, 10.1186/1471-2164-15-312
Verdier, 2013, A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds, Plant Physiol, 163, 757, 10.1104/pp.113.222380
Verni�, 2008, EFD is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula, Plant Cell, 20, 2696, 10.1105/tpc.108.059857
Wang, 2013, LegumeGRN: a gene regulatory network prediction server for functional and comparative studies, PLoS One, 8, e67434, 10.1371/journal.pone.0067434
Wu, 2005, GMAP: a genomic mapping and alignment program for mRNA and EST sequences, Bioinformatics, 21, 1859, 10.1093/bioinformatics/bti310
Young, 2011, The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, 480, 520, 10.1038/nature10625