Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire

Journal of Mathematical Biology - Tập 73 - Trang 847-866 - 2016
Nicolas Bacaër1,2
1IRD (Institut de Recherche pour le Développement), UMMISCO, Bondy, France
2Université Pierre et Marie Curie, UMMISCO, Paris, France

Tóm tắt

The stochastic SIS epidemic model in a random environment. In a random environment that is a two-state continuous-time Markov chain, the mean time to extinction of the stochastic SIS epidemic model grows in the supercritical case exponentially with respect to the population size if the two states are favorable, and like a power law if one state is favorable while the other is unfavorable.

Tài liệu tham khảo

Artalejo JR, Economou A, Lopez-Herreo MJ (2013) Stochastic epidemic models with random environment: quasi-stationarity, extinction and final size. J Math Biol 67:799–831 Bacaër N, Ed-Darraz A (2014) On linear birth-and-death processes in a random environment. J Math Biol 69:73–90 Bacaër N (2015) On the stochastic SIS epidemic model in a periodic environment. J Math Biol 71:491–511 Bender CM, Orszag SA (1978) Advanced mathematical methods for scientists and engineers. McGraw Hill, New York Berman A, Plemmons RJ (1979) Nonnegative matrices in the mathematical sciences. Academic Press, New York Cogburn R, Torrez WC (1981) Birth and death processes with random environments in continuous time. J Appl Probab 18:19–30 Cohen JE (1981) Convexity of the dominant eigenvalue of an essentially nonnegative matrix. Proc Am Math Soc 81:657–658 Doering CR, Sargsyan KV, Sander LM (2005) Extinction times for birth-death processes: exact results, continuum asymptotics, and the failure of the Fokker-Planck approximation. Multiscale Model Simul 3:283–299 Gaveau B, Moreau M, Toth J (1996) Decay of the metastable state in a chemical system: different predictions between discrete and continuous models. Lett Math Phys 37:285–292 Kamenev A, Meerson B, Shklovskii B (2008) How colored environmental noise affects population extinction. Phys Rev Lett 101:268103 Kato T (1982) Superconvexity of the spectral radius, and convexity of the spectral bound and the type. Math Z 180:265–273 Kingman JFC (1961) A convexity property of positive matrices. Q J Math Oxford Ser (2) 12:283–284 Lande R (1993) Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am Nat 142:911–927 Leigh EG (1981) The average lifetime of a population in a varying environment. J Theor Biol 90:213–239 Ludwig D (1976) A singular perturbation problem in the theory of population extinction. SIAM-AMS Proc 10:87–104 Maroni P (1997) Fonctions hypergéométriques, fonctions de Bessel. Éditions Techniques de l’Ingénieur, Paris Meerson B, Sasorov PV (2008) Noise-driven unlimited population growth. Phys Rev E 78:060103 Nåsell I (2011) Extinction and quasi-stationarity in the stochastic logistic SIS model. Springer, Berlin Slatkin M (1978) The dynamics of a population in a Markovian environment. Ecology 59:249–256 Sawyer S, Slatkin M (1981) Density independent fluctuations of population size. Theor Popul Biol 19:37–57 Smith HL (1995) Monotone dynamical systems. American Mathematical Society, Providence