Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J, Gong L, Yen WC, Mai W, Chen J, Huo K, Chueh Y, Wang ZL, Zhou J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6:9200–9206. https://doi.org/10.1021/nn303530k
Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74. https://doi.org/10.1016/j.nanoen.2015.04.007
Yuan L, Tao Y, Chen J, Dai J, Song T, Ruan M, Ma Z, Gong L, Liu K, Zhang X, Hu X, Zhou J, Wang Z (2011) Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Adv Funct Mater 21:2150–2154. https://doi.org/10.1002/adfm.201100172
Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. https://doi.org/10.1126/science.1249625
Chen W, Yu H, Lee S, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/c7cs00790f
Nirmale T, Kale B, Varma A (2017) A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery. Int J Biol Macromol 103:1032–1043. https://doi.org/10.1016/j.ijbiomac.2017.05.155
Wang Z, Carlsson D, Tammela P, Hua K, Zhang P, Nyholm L, Stromme M (2015) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9:7563–7571. https://doi.org/10.1021/acsnano.5b02846
Niu Q, Guo Y, Gao K, Shao Z (2016) Polypyrrole/cellulose nanofibers aerogel as supercapacitors electrode material. Rsc Adv 110:109143–109149. https://doi.org/10.1039/C6RA23216G
Xia L, Li X, Wu X, Huang L, Liao Y, Qing Y, Wu Y, Lu X (2018) Fe3O4 nanoparticles embedded in cellulose nanofibre/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors. J Mater Chem A 6:17378–17388. https://doi.org/10.1039/c8ta05678a
Ramesh S, Khandelwal S, Rhee K, Hui D (2018) Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Compos Part B Eng 138:45–54. https://doi.org/10.1016/j.compositesb.2017.11.024
Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. Rsc Adv 3:15058–15064. https://doi.org/10.1039/c3ra42050g
Niu Q, Gao K, Shao Z (2014) Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 6:4083–4088. https://doi.org/10.1039/c3nr05929d
Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271. https://doi.org/10.1021/am507999s
Kang Y, Chun S, Lee S, Kim B, Kim J, Chung H, Lee S, Kim W (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6:6400–6406. https://doi.org/10.1021/nn301971r
Liu R, Ma L, Huang S, Mei J, Li E, Yuan G (2016) Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors. J Phys Chem C 120:28480–28488. https://doi.org/10.1021/acs.jpcc.6b10475
Borhani S, Moradi M, Kiani M, Hajati S, Toth J (2017) CoxZn1-x ZIF-derived binary Co3O4/ZnO wrapped by 3D reduced graphene oxide for asymmetric supercapacitor: comparison of pure and heat-treated bimetallic MOF. Ceram Int 43:14413–14425. https://doi.org/10.1016/j.ceramint.2017.07.211
Zhu G, Wen H, Ma M, Wang W, Yang L, Wang L, Shi X, Cheng X, Sun X, Yao Y (2018) A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chem Commun 54:10499–10502. https://doi.org/10.1039/c8cc03669a
Matsumoto M, Kitaoka T (2016) Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 28:1765–1769. https://doi.org/10.1002/adma.201504784
Salunkhe R, Tang J, Kamachi Y, Nakato T, Kim J, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9:6288–6296. https://doi.org/10.1021/acsnano.5b01790
Torad N, Salunkhe R, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem-Eur J 20:7895–7900. https://doi.org/10.1002/chem.201400089
Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943. https://doi.org/10.1126/science.1152516
Shao J, Wan Z, Liu H, Zheng H, Gao T, Shen M, Qu Q, Zheng H (2014) Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A 2:12194–12200. https://doi.org/10.1039/c4ta01966k
Yu D, Ge L, Wei X, Wu B, Ran J, Wang H, Xu T (2017) A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes. J Mater Chem A 5:16865–16872. https://doi.org/10.1039/c7ta04074a
Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L (2015) Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–354. https://doi.org/10.1016/j.nanoen.2015.02.015
Li Z, Liu J, Jiang K, Thundat T (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–169. https://doi.org/10.1016/j.nanoen.2016.04.036
Li X, Shao C, Zhuo B, Yang S, Zhu Z, Su C, Yuan Q (2019) The use of nanofibrillated cellulose to fabricate a homogeneous and flexible graphene-based electric heating membrane. Int J Biol Macromol 139:1103–1116. https://doi.org/10.1016/j.ijbiomac.2019.08.081
Wang Z, Xu C, Tammela P, Huo J, Stromme M, Edstrom K, Gustafsson T, Nyholm L (2015) Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J Mater Chem A 3:14109–14115. https://doi.org/10.1039/c5ta02136g
Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223. https://doi.org/10.1016/j.matlet.2012.05.077
Wang Y, Chen B, Zhang Y, Fu L, Zhu Y, Zhang L, Wu Y (2016) ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochim Acta 213:260–269. https://doi.org/10.1016/j.electacta.2016.07.019
Wang L, Yang H, Pan G, Miao L, Chen S, Song Y (2017) Polyaniline-carbon nanotubes@zeolite imidazolate framework67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23. https://doi.org/10.1016/j.electacta.2017.04.035
Cao S, Feng X, Song Y, Xue X, Liu H, Miao M, Fang J, Shi L (2015) Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl Mater Interfaces 7:10695–10701. https://doi.org/10.1021/acsami.5b02693
Zhang Y, Wang F, Zhu H, Zhou L, Zheng X, Li X, Chen Z, Wang Y, Zhang D, Pan D (2017) Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors. Appl Surf Sci 426:99–106. https://doi.org/10.1016/j.apsusc.2017.07.127
Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613
Mohamed I, Yasin A, Liu C (2020) Synthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceram Int 46:3912–3920. https://doi.org/10.1016/j.ceramint.2019.10.119
Chen Y, Hsu Y, Lin Y, Lin Y, Horng Y, Chen L, Chen K (2011) Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim Acta 56:7124–7130. https://doi.org/10.1016/j.electacta.2011.05.090
Wang F, Li D (2015) Foldable and free-standing 3D network electrodes based on cellulose nanofibers, carbon nanotubes and elongated TiO2 nanotubes. Mater Lett 158:119–122. https://doi.org/10.1016/j.matlet.2015.06.008
Yao J, Yao S, Gao F, Duan L, Niu M, Liu J (2018) Reduced graphene oxide/Mn3O4 nanohybrid for high-rate pseduocapacitive electrodes. J Colloid Interface Sci 511:434–439. https://doi.org/10.1016/j.jcis.2017.10.031
Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325. https://doi.org/10.1021/nl203600x
Huang Y, Miao Y, Tjiu W, Liu T (2015) High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. Rsc Adv 5:18952–18959. https://doi.org/10.1039/c4ra17312k
Li N, Li X, Yang C, Wang F, Li J, Wang H, Chen C, Liu S, Pan Y, Li D (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. Rsc Adv 6:86744–86751. https://doi.org/10.1039/c6ra19529f