Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes

Springer Science and Business Media LLC - Tập 4 Số 2 - Trang 306-316 - 2021
Li-Ye Xiao1, Houjuan Qi2, Keqi Qu2, Cai Shi2, Yong Cheng2, Zhe Sun2, Bingnan Yuan3,2, Zhanhua Huang2, Duo Pan3,4, Zhanhu Guo3
1Key Laboratory of Bio-Based Material Science and Technology, Material Science and Engineering College, Northeast Forestry University, Harbin, China
2Key Laboratory of Bio-Based Material Science & Technology, Material Science and Engineering College, Northeast Forestry University, Harbin, China
3Integrated Composites Laboratory (ICL), Department of Chemical and Bimolecular Engineering, University of Tennessee, Knoxville, USA
4Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Xiao X, Li T, Yang P, Gao Y, Jin H, Ni W, Zhan W, Zhang X, Cao Y, Zhong J, Gong L, Yen WC, Mai W, Chen J, Huo K, Chueh Y, Wang ZL, Zhou J (2012) Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6:9200–9206. https://doi.org/10.1021/nn303530k

Cheng Y, Huang L, Xiao X, Yao B, Yuan L, Li T, Hu Z, Wang B, Wan J, Zhou J (2015) Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 15:66–74. https://doi.org/10.1016/j.nanoen.2015.04.007

Yuan L, Tao Y, Chen J, Dai J, Song T, Ruan M, Ma Z, Gong L, Liu K, Zhang X, Hu X, Zhou J, Wang Z (2011) Carbon nanoparticles on carbon fabric for flexible and high-performance field emitters. Adv Funct Mater 21:2150–2154. https://doi.org/10.1002/adfm.201100172

Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211. https://doi.org/10.1126/science.1249625

Chen W, Yu H, Lee S, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872. https://doi.org/10.1039/c7cs00790f

Nirmale T, Kale B, Varma A (2017) A review on cellulose and lignin based binders and electrodes: small steps towards a sustainable lithium ion battery. Int J Biol Macromol 103:1032–1043. https://doi.org/10.1016/j.ijbiomac.2017.05.155

Wang Z, Carlsson D, Tammela P, Hua K, Zhang P, Nyholm L, Stromme M (2015) Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9:7563–7571. https://doi.org/10.1021/acsnano.5b02846

Niu Q, Guo Y, Gao K, Shao Z (2016) Polypyrrole/cellulose nanofibers aerogel as supercapacitors electrode material. Rsc Adv 110:109143–109149. https://doi.org/10.1039/C6RA23216G

Xia L, Li X, Wu X, Huang L, Liao Y, Qing Y, Wu Y, Lu X (2018) Fe3O4 nanoparticles embedded in cellulose nanofibre/graphite carbon hybrid aerogels as advanced negative electrodes for flexible asymmetric supercapacitors. J Mater Chem A 6:17378–17388. https://doi.org/10.1039/c8ta05678a

Ramesh S, Khandelwal S, Rhee K, Hui D (2018) Synergistic effect of reduced graphene oxide, CNT and metal oxides on cellulose matrix for supercapacitor applications. Compos Part B Eng 138:45–54. https://doi.org/10.1016/j.compositesb.2017.11.024

Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. Rsc Adv 3:15058–15064. https://doi.org/10.1039/c3ra42050g

Niu Q, Gao K, Shao Z (2014) Cellulose nanofiber/single-walled carbon nanotube hybrid non-woven macrofiber mats as novel wearable supercapacitors with excellent stability, tailorability and reliability. Nanoscale 6:4083–4088. https://doi.org/10.1039/c3nr05929d

Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS Appl Mater Interfaces 7:3263–3271. https://doi.org/10.1021/am507999s

Kang Y, Chun S, Lee S, Kim B, Kim J, Chung H, Lee S, Kim W (2012) All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano 6:6400–6406. https://doi.org/10.1021/nn301971r

Liu R, Ma L, Huang S, Mei J, Li E, Yuan G (2016) Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors. J Phys Chem C 120:28480–28488. https://doi.org/10.1021/acs.jpcc.6b10475

Borhani S, Moradi M, Kiani M, Hajati S, Toth J (2017) CoxZn1-x ZIF-derived binary Co3O4/ZnO wrapped by 3D reduced graphene oxide for asymmetric supercapacitor: comparison of pure and heat-treated bimetallic MOF. Ceram Int 43:14413–14425. https://doi.org/10.1016/j.ceramint.2017.07.211

Zhu G, Wen H, Ma M, Wang W, Yang L, Wang L, Shi X, Cheng X, Sun X, Yao Y (2018) A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chem Commun 54:10499–10502. https://doi.org/10.1039/c8cc03669a

Matsumoto M, Kitaoka T (2016) Ultraselective gas separation by nanoporous metal-organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 28:1765–1769. https://doi.org/10.1002/adma.201504784

Salunkhe R, Tang J, Kamachi Y, Nakato T, Kim J, Yamauchi Y (2015) Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal-organic framework. ACS Nano 9:6288–6296. https://doi.org/10.1021/acsnano.5b01790

Torad N, Salunkhe R, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem-Eur J 20:7895–7900. https://doi.org/10.1002/chem.201400089

Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O (2008) High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319:939–943. https://doi.org/10.1126/science.1152516

Shao J, Wan Z, Liu H, Zheng H, Gao T, Shen M, Qu Q, Zheng H (2014) Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J Mater Chem A 2:12194–12200. https://doi.org/10.1039/c4ta01966k

Yu D, Ge L, Wei X, Wu B, Ran J, Wang H, Xu T (2017) A general route to the synthesis of layer-by-layer structured metal organic framework/graphene oxide hybrid films for high-performance supercapacitor electrodes. J Mater Chem A 5:16865–16872. https://doi.org/10.1039/c7ta04074a

Li Y, Zhu H, Shen F, Wan J, Lacey S, Fang Z, Dai H, Hu L (2015) Nanocellulose as green dispersant for two-dimensional energy materials. Nano Energy 13:346–354. https://doi.org/10.1016/j.nanoen.2015.02.015

Li Z, Liu J, Jiang K, Thundat T (2016) Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25:161–169. https://doi.org/10.1016/j.nanoen.2016.04.036

Li X, Shao C, Zhuo B, Yang S, Zhu Z, Su C, Yuan Q (2019) The use of nanofibrillated cellulose to fabricate a homogeneous and flexible graphene-based electric heating membrane. Int J Biol Macromol 139:1103–1116. https://doi.org/10.1016/j.ijbiomac.2019.08.081

Wang Z, Xu C, Tammela P, Huo J, Stromme M, Edstrom K, Gustafsson T, Nyholm L (2015) Flexible freestanding Cladophora nanocellulose paper based Si anodes for lithium-ion batteries. J Mater Chem A 3:14109–14115. https://doi.org/10.1039/c5ta02136g

Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223. https://doi.org/10.1016/j.matlet.2012.05.077

Wang Y, Chen B, Zhang Y, Fu L, Zhu Y, Zhang L, Wu Y (2016) ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochim Acta 213:260–269. https://doi.org/10.1016/j.electacta.2016.07.019

Wang L, Yang H, Pan G, Miao L, Chen S, Song Y (2017) Polyaniline-carbon nanotubes@zeolite imidazolate framework67-carbon cloth hierarchical nanostructures for supercapacitor electrode. Electrochim Acta 240:16–23. https://doi.org/10.1016/j.electacta.2017.04.035

Cao S, Feng X, Song Y, Xue X, Liu H, Miao M, Fang J, Shi L (2015) Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl Mater Interfaces 7:10695–10701. https://doi.org/10.1021/acsami.5b02693

Zhang Y, Wang F, Zhu H, Zhou L, Zheng X, Li X, Chen Z, Wang Y, Zhang D, Pan D (2017) Preparation of nitrogen-doped biomass-derived carbon nanofibers/graphene aerogel as a binder-free electrode for high performance supercapacitors. Appl Surf Sci 426:99–106. https://doi.org/10.1016/j.apsusc.2017.07.127

Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal-organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137:4920–4923. https://doi.org/10.1021/jacs.5b01613

Mohamed I, Yasin A, Liu C (2020) Synthesis, surface characterization and electrochemical performance of ZnO @ activated carbon as a supercapacitor electrode material in acidic and alkaline electrolytes. Ceram Int 46:3912–3920. https://doi.org/10.1016/j.ceramint.2019.10.119

Chen Y, Hsu Y, Lin Y, Lin Y, Horng Y, Chen L, Chen K (2011) Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode. Electrochim Acta 56:7124–7130. https://doi.org/10.1016/j.electacta.2011.05.090

Wang F, Li D (2015) Foldable and free-standing 3D network electrodes based on cellulose nanofibers, carbon nanotubes and elongated TiO2 nanotubes. Mater Lett 158:119–122. https://doi.org/10.1016/j.matlet.2015.06.008

Yao J, Yao S, Gao F, Duan L, Niu M, Liu J (2018) Reduced graphene oxide/Mn3O4 nanohybrid for high-rate pseduocapacitive electrodes. J Colloid Interface Sci 511:434–439. https://doi.org/10.1016/j.jcis.2017.10.031

Yang L, Cheng S, Ding Y, Zhu X, Wang ZL, Liu M (2012) Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett 12:321–325. https://doi.org/10.1021/nl203600x

Huang Y, Miao Y, Tjiu W, Liu T (2015) High-performance flexible supercapacitors based on mesoporous carbon nanofibers/Co3O4/MnO2 hybrid electrodes. Rsc Adv 5:18952–18959. https://doi.org/10.1039/c4ra17312k

Li N, Li X, Yang C, Wang F, Li J, Wang H, Chen C, Liu S, Pan Y, Li D (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. Rsc Adv 6:86744–86751. https://doi.org/10.1039/c6ra19529f

Yang C, Chen C, Pan Y, Li S, Wang F, Li J, Li N, Li X, Zhang Y, Li D (2015) Flexible highly specific capacitance aerogel electrodes based on cellulose nanofibers, carbon nanotubes and polyaniline. Electrochim Acta 182:264–271. https://doi.org/10.1016/j.electacta.2015.09.096