Laurent polynomials, Eulerian numbers, and Bernstein's theorem

Journal of Combinatorial Theory, Series A - Tập 124 - Trang 244-250 - 2014
Ricky Ini Liu1
1Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Tài liệu tham khảo

Bernstein, 1975, The number of roots of a system of equations, Funktsional. Anal. i Prilozhen., 9, 1 Duistermaat, 1998, Constant terms in powers of a Laurent polynomial, Indag. Math. (N.S.), 9, 221, 10.1016/S0019-3577(98)80020-7 Erman, 2011, Laurent polynomials and Eulerian numbers, J. Combin. Theory Ser. A, 118, 396, 10.1016/j.jcta.2010.02.006 Khovanskiĭ, 1978, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen., 12, 51, 10.1007/BF01077562 Kušnirenko, 1976, Newton polyhedra and Bezout's theorem, Funktsional. Anal. i Prilozhen., 10, 82 Lam, 2007, Alcoved polytopes. I, Discrete Comput. Geom., 38, 453, 10.1007/s00454-006-1294-3 Sagan, 2011, Eulerian quasisymmetric functions and cyclic sieving, Adv. in Appl. Math., 46, 536, 10.1016/j.aam.2010.01.013 Stanley, 1977, Eulerian partitions of a unit hypercube, 49 Sturmfels, 2002, Solving Systems of Polynomial Equations, vol. 97