Lattices over Bass Rings and Graph Agglomerations

Algebras and Representation Theory - Tập 25 - Trang 669-704 - 2021
Nicholas R. Baeth1, Daniel Smertnig2
1Department of Mathematics, Franklin & Marshall College, Lancaster, USA
2Institute for Mathematics and Scientific Computing, NAWI Graz, University of Graz, Graz, Austria

Tóm tắt

We study direct-sum decompositions of torsion-free, finitely generated modules over a (commutative) Bass ring R through the factorization theory of the corresponding monoid T(R). Results of Levy–Wiegand and Levy–Odenthal together with a study of the local case yield an explicit description of T(R). The monoid is typically neither factorial nor cancellative. Nevertheless, we construct a transfer homomorphism to a monoid of graph agglomerations—a natural class of monoids serving as combinatorial models for the factorization theory of T(R). As a consequence, the monoid T(R) is transfer Krull of finite type and several finiteness results on arithmetical invariants apply. We also establish results on the elasticity of T(R) and characterize when T(R) is half-factorial. (Factoriality, that is, torsion-free Krull–Remak–Schmidt–Azumaya, is characterized by a theorem of Levy–Odenthal.) The monoids of graph agglomerations introduced here are also of independent interest.

Tài liệu tham khảo

Anderson, D.D., Anderson, D.F.: Elasticity of factorizations in integral domains. J. Pure Appl. Algebra 80(3), 217–235 (1992). https://doi.org/10.1016/0022-4049(92)90144-5 Anderson, D. D. (ed.): Factorization in Integral Domains, Volume 189 of Lecture Notes in Pure and Applied Mathematics. Marcel Dekker Inc, New York (1997) Baeth, N.R.: A Krull-Schmidt theorem for one-dimensional rings of finite Cohen-Macaulay type. J. Pure Appl. Algebra 208(3), 923–940 (2007). https://doi.org/10.1016/j.jpaa.2006.03.023 Bass, H.: On the ubiquity of Gorenstein rings. Math. Z. 82, 8–28 (1963). https://doi.org/10.1007/BF01112819 Baeth, N.R., Geroldinger, A.: Monoids of modules and arithmetic of direct-sum decompositions. Pacific J. Math. 271(2), 257–319 (2014). https://doi.org/10.2140/pjm.2014.271.257 Baeth, N.R., Geroldinger, A., Grynkiewicz, D.J., Smertnig, D.: A semigroup-theoretical view of direct-sum decompositions and associated combinatorial problems. J. Algebra Appl. 14(2), 1550016, 60 (2015). https://doi.org/10.1142/S0219498815500164 Bashir, A., Geroldinger, A., Reinhart, A.: On the arithmetic of stable domains. arXiv:2007.05574 (2020) Baeth, N.R., Luckas, M.R.: Monoids of torsion-free modules over rings with finite representation type. J. Commut. Algebra 3(4), 439–458 (2011). https://doi.org/10.1216/JCA-2011-3-4-439 Baeth, N.R., Saccon, S.: Monoids of modules over rings of infinite Cohen-Macaulay type. J. Commut. Algebra 4(3), 297–326 (2012). https://doi.org/10.1216/jca-2012-4-3-297 Baeth, N.R., Wiegand, R.: Factorization theory and decompositions of modules. Amer. Math. Monthly 120(1), 3–34 (2013). https://doi.org/10.4169/amer.math.monthly.120.01.003 Chapman, S. T., Fontana, M., Geroldinger, A., Olberding, B. (eds.): Multiplicative Ideal Theory and Factorization Theory. Springer International Publishing, Berlin (2016). Commutative and Non-commutative Perspectives. https://doi.org/10.1007/978-3-319-38855-7 Chapman, S. T. (ed.): Arithmetical Properties of Commutative Rings and Monoids, Volume 241 of Lecture Notes in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2005). https://doi.org/10.1201/9781420028249 Cimen, N., Wiegand, R., Wiegand, S.: One-dimensional rings of finite representation type. In: Abelian Groups and Modules (Padova, 1994), Volume 343 of Math. Appl., pp 95–121. Kluwer Acad. Publ., Dordrecht (1995) Diracca, L.: On a generalization of the exchange property to modules with semilocal endomorphism rings. J. Algebra 313(2), 972–987 (2007). https://doi.org/10.1016/j.jalgebra.2007.02.041 Facchini, A.: Direct sum decompositions of modules, semilocal endomorphism rings, and Krull monoids. J. Algebra 256(1), 280–307 (2002). https://doi.org/10.1016/S0021-8693(02)00164-3 Facchini, A.: Direct-sum decompositions of modules with semilocal endomorphism rings. Bull. Math. Sci. 2(2), 225–279 (2012). https://doi.org/10.1007/s13373-012-0024-9 Facchini, A.: Semilocal Categories and Modules with Semilocal Endomorphism Rings, Volume 331 of Progress in Mathematics. Birkhäuser/Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23284-9 Fan, Y., Geroldinger, A., Kainrath, F., Tringali, S.: Arithmetic of commutative semigroups with a focus on semigroups of ideals and modules. J. Algebra Appl. 16(12), 1750234, 42 (2017). https://doi.org/10.1142/S0219498817502346 Facchini, A., Herbera, D.: K0 of a semilocal ring. J. Algebra 225(1), 47–69 (2000). https://doi.org/10.1006/jabr.1999.8092 Facchini, A., Herbera, D.: Projective modules over semilocal rings. In: Algebra and its Applications (Athens, OH, 1999), Volume 259 of Contemp. Math., pp 181–198. Amer. Math. Soc., Providence (2000), https://doi.org/10.1090/conm/259/04094 Facchini, A., Hassler, W., Klingler, L., Wiegand, R.: Direct-sum decompositions over one-dimensional Cohen-Macaulay local rings. In: Multiplicative Ideal Theory in Commutative Algebra, pp 153–168. Springer, New York (2006), https://doi.org/10.1007/978-0-387-36717-0_10 Fontana, M., Houston, E., Lucas, T.: Factoring Ideals in Integral Domains, Volume 14 of Lecture Notes of the Unione Matematica Italiana. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31712-5 Fan, Y., Tringali, S.: Power monoids: A bridge between factorization theory and arithmetic combinatorics. J. Algebra 512, 252–294 (2018). https://doi.org/10.1016/j.jalgebra.2018.07.010 Facchini, A., Wiegand, R.: Direct-sum decompositions of modules with semilocal endomorphism rings. J. Algebra 274(2), 689–707 (2004). https://doi.org/10.1016/j.jalgebra.2003.06.004 Gabelli, S.: Ten problems on stability of domains. In: Commutative Algebra, pp 175–193. Springer, New York (2014) Geroldinger, A.: Sets of lengths. Amer. Math. Monthly 123(10), 960–988 (2016). https://doi.org/10.4169/amer.math.monthly.123.10.960 Geroldinger, A., Hassler, W.: Local tameness of v-Noetherian monoids. J. Pure Appl. Algebra 212(6), 1509–1524 (2008). https://doi.org/10.1016/j.jpaa.2007.10.020 Geroldinger, A., Halter-Koch, F.: Non-Unique Factorizations, Volume 278 of Pure and Applied Mathematics (Boca Raton). Chapman & Hall/CRCFL, Boca Raton (2006). Algebraic, combinatorial and analytic theory. https://doi.org/10.1201/9781420003208 Gao, P., Pérez-Giménez, X., Sato, C.M.: Arboricity and spanning-tree packing in random graphs. Random Struct. Algor. 52(3), 495–535 (2018). https://doi.org/10.1002/rsa.20743 Geroldinger, A., Ruzsa, I.Z.: Combinatorial Number Theory and Additive Group Theory. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser, Basel (2009). Courses and seminars from the DocCourse in Combinatorics and Geometry held in Barcelona. 2008, https://doi.org/10.1007/978-3-7643-8962-8 Geroldinger, A., Zhong, Q.: Sets of arithmetical invariants in transfer Krull monoids. J. Pure Appl. Algebra 223(9), 3889–3918 (2019). https://doi.org/10.1016/j.jpaa.2018.12.011 Geroldinger, A., Zhong, Q.: Factorization theory in commutative monoids. Semigroup Forum 100 (1), 22–51 (2020). https://doi.org/10.1007/s00233-019-10079-0 Halter-Koch, F.: Non-unique factorizations of algebraic integers. Funct. Approx. Comment. Math. 39(part 1), 49–60 (2008). https://doi.org/10.7169/facm/1229696553 Herbera, D., Příhoda, P.: Big projective modules over noetherian semilocal rings. J. Reine Angew. Math. 648, 111–148 (2010). https://doi.org/10.1515/CRELLE.2010.081 Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules, Volume 336 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2006) Liu, Q., Hong, Y., Gu, X., Lai, H.-J.: Note on edge-disjoint spanning trees and eigenvalues. Linear Algebra Appl. 458, 128–133 (2014). https://doi.org/10.1016/j.laa.2014.05.044 Liu, R., Lai, H. -J., Tian, Y.: Spanning tree packing number and eigenvalues of graphs with given girth. Linear Algebra Appl. 578, 411–424 (2019). https://doi.org/10.1016/j.laa.2019.05.022 Levy, L.S., Odenthal, C.J.: Krull-Schmidt theorems in dimension 1. Trans. Amer. Math Soc. 348(9), 3391–3455 (1996). https://doi.org/10.1090/S0002-9947-96-01619-4 Levy, L.S., Odenthal, C.J.: Package deal theorems and splitting orders in dimension 1. Trans. Amer. Math. Soc. 348(9), 3457–3503 (1996). https://doi.org/10.1090/S0002-9947-96-01620-0 Levy, L.S., Wiegand, R.: Dedekind-like behavior of rings with 2-generated ideals. J. Pure Appl. Algebra 37(1), 41–58 (1985). https://doi.org/10.1016/0022-4049(85)90086-6 Leuschke, G.J., Wiegand, R.: Cohen-Macaulay Representations, Volume 181 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (2012). https://doi.org/10.1090/surv/181 Matlis, E.: 1-Dimensional Cohen-Macaulay Rings. Lecture Notes in Mathematics, vol. 327. Springer, Berlin (1973) Matsumura, H.: Commutative Ring Theory, Volume 8 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (1989). Translated from the Japanese by M. Reid Olberding, B.: One-dimensional stable rings. J. Algebra 456, 93–122 (2016). https://doi.org/10.1016/j.jalgebra.2016.02.002 Palmer, E.M.: On the spanning tree packing number of a graph: A survey. Discrete Math. 230 (1–3), 13–21 (2001). https://doi.org/10.1016/S0012-365X(00)00066-2. Paul Catlin memorial collection (Kalamazoo, MI, 1996) Schmid, W.A.: Some recent results and open problems on sets of lengths of Krull Monoids with finite class group. In: Multiplicative Ideal Theory and Factorization Theory, Volume 170 of Springer Proc. Math. Stat, pp 323–352. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38855-7_14 Tringali, S.: Structural properties of subadditive sequences with applications to factorization theory and additive combinatorics. Preprint (accessed 2020-06-12). https://imsc.uni-graz.at/tringali/docs/sub.pdf (2018) Tringali, S.: Structural properties of subadditive families with applications to factorization theory. Israel J. Math. 234(1), 1–35 (2019). https://doi.org/10.1007/s11856-019-1922-2 Wiegand, R.: Cancellation over commutative rings of dimension one and two. J. Algebra 88(2), 438–459 (1984). https://doi.org/10.1016/0021-8693(84)90077-2 Wiegand, R.: Direct-sum decompositions over local rings. J. Algebra 240(1), 83–97 (2001). https://doi.org/10.1006/jabr.2000.8657 Wiegand, R., Wiegand, S.: Semigroups of modules: A survey. In: Rings, Modules and Representations, Volume 480 of Contemp. Math., pp 335–349. Amer. Math. Soc., Providence (2009), https://doi.org/10.1090/conm/480/09384 Zhong, Q.: On elasticities of locally finitely generated monoids. J. Algebra 534, 145–167 (2019). https://doi.org/10.1016/j.jalgebra.2019.05.031