Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự lệch lưới và phân chia xoắn tại mô hình hai màu đồng nhất của các giao diện hai pha
Tóm tắt
Các dislocation không khớp được hình thành tại một giao diện hai pha để giảm và thậm chí làm giảm căng thẳng đồng nhất trong vùng xa khỏi giao diện. Các giao diện bán đồng nhất như vậy là những đặc điểm cấu trúc then chốt trong một loạt các vật liệu kỹ thuật. Vectơ Burgers của các dislocation không khớp được xác định bằng lưới tham chiếu được gọi là mô hình hai màu đồng nhất (CDP) trong mô hình hình học. CDP không phải là một giá trị trung bình hình học của các đơn vị biên như đã được sử dụng trong nhiều ví dụ từ trước đến nay. Trong công trình này, dựa trên hàm Green và lý thuyết về dislocation, cả hai tác động cơ học của các dãy dislocation tại giao diện và các biến dạng đồng nhất do sự khớp hình học tại giao diện đều được xem xét để thu được CDP. Chúng tôi đã chỉ ra rằng sự không khớp và phân chia xoắn tại một CDP được phân chia không đều trong hai tinh thể kề nhau, điều này chỉ phụ thuộc vào các đặc tính đàn hồi của hai tinh thể mà không quan tâm đến đặc điểm của các dislocation không khớp. Tương ứng, phương pháp xác định CDP của một giao diện hai pha trong tinh thể đôi đã được phát triển.
Từ khóa
#dislocation không khớp #giao diện hai pha #mô hình hai màu đồng nhất #vectơ Burgers #biến dạng đồng nhất #tinh thể đôiTài liệu tham khảo
J.M. Howe, R.C. Pond, J.P. Hirth, The role of disconnections in phase transformations. Prog. Mater. Sci. 54, 792 (2009)
F.C. Frank, Report of the Symposium on the Plastic Deformation of Crystalline Solids (Carnegie Institute of Technology, Pittsburgh, PA, 1950), p. 150
B.A. Bilby, Report of the Conference Defects in Crystalline Solids (Physical Society, London, 1955), p. 124
W. Bollmann, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).
R.C. Pond, J.P. Hirth, Defects at surfaces and interfaces. Solid State Phys. 47, 287 (1994)
R.C. Pond, W. Bollmann, The symmetry and interfacial structure of bicrystals. Philos. Trans. R. Soc. A 292, 449 (1979)
H.J. Chu, E. Pan, Elastic fields due to dislocation arrays in anisotropic bimaterials. Int. J. Solids Struct. 51, 1954 (2014)
Y.H. Zhang, Y.H. Xu, H.J. Chu, Size effect of layer thickness on stress fields due to interface core-spreading dislocation arrays in multilayers. Sci. China Technol. Sci. 63, 277 (2020)
J. Wang, J.P. Hirth, R.C. Pond, J.M. Howe, Rotational partitioning at two-phase interfaces. Acta Mater. 59, 241 (2011)
J. Wang, R.F. Zhang, C.Z. Zhou, I.J. Beyerlein, A. Misra, Characterizing interface dislocations by atomically informed Frank-Bilby theory. J. Mater. Res. 28, 1646 (2013)
C.Z. Zhou, A. Misra, R.F. Zhang, I.J. Beyerlein, J. Wang, Interface dislocation patterns and dislocation nucleation in face-centered-cubic and body-centered-cubic bicrystal interfaces. Int. J. Plast. 53, 40 (2014)
T.C.T. Ting, Anisotropic elasticity: theory and applications. J. Appl. Mech. 63, 1056 (1996)
A.N. Stroh, Dislocations and cracks in anisotropic elasticity. Philos. Mag. 3, 625 (1958)
A.N. Stroh, Steady state problems in anisotropic elasticity. J. Math. Phys. 41, 77 (1962)
A.H. Cottrell, D.L. Dexter, Dislocations and plastic flow in crystals. Am. J. Phys. 22, 242 (1954)
J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Willey, New York, 1982).
S. Shao, J. Wang, A. Misra, R.G. Hoagland, Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. 3, 2448 (2013)
S. Shao, J. Wang, A. Misra, Energy minimization mechanisms of semi-coherent interfaces. J. Appl. Phys. 116, 023508 (2014)
S. Shao, F. Akasheh, J. Wang, Y. Liu, Alternative misfit dislocations pattern in semi-coherent FCC 100 interfaces. Acta Mater. 144, 177 (2018)