Lattice distortion tuning of the metamagnetic phase transition in tetragonal Cu2Sb-type Mn1.95V0.05Sb alloy

Scripta Materialia - Tập 143 - Trang 59-62 - 2018
Weibin Cui1,2, Wei-Jun Ren3, Zhidong D. Zhang3, Xiaoqian Zhou1,2, Hui Zhong1,2, Qiang Wang1
1Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang, 110819, China
2Department of Physics and Chemistry of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
3Institute of Metal Research, Chinese Academy of Science, Shenyang 110016, China

Tài liệu tham khảo

Pecharsky, 1997, Phys. Rev. Lett., 78, 4494, 10.1103/PhysRevLett.78.4494 Wada, 2001, Appl. Phys. Lett., 79, 3302, 10.1063/1.1419048 Gama, 2004, Phys. Rev. Lett., 93, 237202, 10.1103/PhysRevLett.93.237202 Fujita, 2003, Phys. Rev. B, 67, 104416, 10.1103/PhysRevB.67.104416 Hu, 2001, Appl. Phys. Lett., 78, 3675, 10.1063/1.1375836 Trung, 2010, Appl. Phys. Lett., 96, 172504, 10.1063/1.3399773 Zhang, 2008, Appl. Phys. Lett., 93, 122505, 10.1063/1.2990649 Chmielus, 2009, Nat. Mater., 8, 863, 10.1038/nmat2527 Krenke, 2005, Nat. Mater., 4, 450, 10.1038/nmat1395 Liu, 2012, Nat. Mater., 66, 620, 10.1038/nmat3334 Cui, 2010, J. Magn. Magn. Mater., 322, 2223, 10.1016/j.jmmm.2010.02.014 Zhang, 2014, Scr. Mater, 75, 26, 10.1016/j.scriptamat.2013.11.009 Xuan, 2008, Appl. Phys. Lett., 92, 102503, 10.1063/1.2895645 Trung, 2010, Appl. Phys. Lett., 96, 172504, 10.1063/1.3399773 Mañosa, 2010, Nat. Mater., 9, 478, 10.1038/nmat2731 Moya, 2012, Nat. Mater., 12, 52, 10.1038/nmat3463 Matsunami, 2014, Nat. Mater., 14 Wada, 2009, Phys. Rev. B, 79, 10.1103/PhysRevB.79.092407 Yuce, 2012, Appl. Phys. Lett., 101, 10.1063/1.4745920 Mañosa, 2011, Nat. Commun., 2, 595, 10.1038/ncomms1606 Wu, 2015, Sci Rep, 5, 18027, 10.1038/srep18027 Salazar Mejía, 2016, Appl. Phys. Lett., 108, 261903, 10.1063/1.4954838 Gottschall, 2016, Phys. Rev. B, 93, 184431, 10.1103/PhysRevB.93.184431 Zhang, 2004, J. Alloys Compd., 365, 35, 10.1016/S0925-8388(03)00643-1 Caron, 2013, Appl. Phys. Lett., 103, 112404, 10.1063/1.4821197 Ma, 2014, Appl. Phys. Lett., 104 Matsumoto, 2014, IEEE Trans. Magn., 5, 1000703 Shimada, 2013, J. Korean Phys. Soc., 63, 747, 10.3938/jkps.63.747 Zhang, 2003, Phys. Rev. B, 67, 132405, 10.1103/PhysRevB.67.132405 Cloud, 1968, Phys. Rev., 168, 637, 10.1103/PhysRev.168.637 More V substitution in Mn2Sb alloy leads to increased AFM-FIM transition temperature but reduced maximum of magnetic entropy changes, which are referred from Suppl. Fig. 1 and Fig. 2. Therefore, Mn1.95V0.05Sb with minimum V substitution amount has been used as benchmark alloy. Balli, 2009, Appl. Phys. Lett., 95, 10.1063/1.3194144 Caron, 2017, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa50d1 Sun, 2000, Phys. Rev. Lett., 85, 4191, 10.1103/PhysRevLett.85.4191 Gschneidner, 2005, Rep. Prog. Phys., 68, 1479, 10.1088/0034-4885/68/6/R04 If Mn sites in Cu2Sb-type Mn2Sb lattice are occupied by Li, the metamagnetic transition from FIM to AFM during cooling process is suppressed, as seen in Suppl. Fig. 3.