Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction

Nature Catalysis - Tập 3 Số 5 - Trang 454-462
Yuanyuan Zhou1, Zhenyang Xie1, Jinxia Jiang1, Jian Wang1, Xiaoyun Song1, Qian He1, Wei Ding1, Zidong Wei1
1The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cong, Y., Yi, B. & Song, Y. Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts. Nano Energy 44, 288–303 (2018).

Sheng, W. et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 7, 1719–1724 (2014).

Asazawa, K. et al. A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8170–8173 (2007).

Ohyama, J., Sato, T. & Satsuma, A. High performance of Ru nanoparticles supported on carbon for anode electrocatalyst of alkaline anion exchange membrane fuel cell. J. Power Sources 225, 311–315 (2013).

Shi, G. Y., Yano, H., Tryk, D. A., Watanabe, M. & Uchida, H. A novel Pt–Co alloy hydrogen anode catalyst with superlative activity, CO-tolerance and robustness. Nanoscale 8, 13893–13897 (2016).

Shi, G. Y., Yano, H., Tryk, D. A., Iiyarna, A. & Uchida, H. Highly active, CO-tolerant, and robust hydrogen anode catalysts: Pt–M (M = Fe, Co, Ni) alloys with stabilized Pt-skin layers. ACS Catal. 7, 267–274 (2017).

Ham, D. J., Kim, Y. K., Han, S. H. & Lee, J. S. Pt/WC as an anode catalyst for PEMFC: activity and CO tolerance. Catal. Today 132, 117–122 (2008).

Hydrogen Council. Hydrogen scaling up. https://hydrogencouncil.com/en/study-hydrogen-scaling-up/ (2017).

Davydova, E. S., Mukerjee, S., Jaouen, F & Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 8, 6665–6690 (2018).

Bellini, M. et al. Palladium–ceria catalysts with enhanced alkaline hydrogen oxidation activity for anion exchange membrane. Fuel Cells ACS Appl. Energy Mater. 2, 4999–5008 (2019).

Wang, R., Li, D., Maurya, S., Kim, Y. S. & Wu, Y. Ultrafine Pt cluster and RuO2 heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horiz. 5, 316–324 (2019).

Miller, H. et al. A Pd/C–CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew. Chem. Int. Ed. 128, 6108–6111 (2016).

Yu, H. et al. Palladium–ceria nanocatalyst for hydrogen oxidation in alkaline media: optimization of the Pd–CeO2 interface. Nano Energy 57, 820–826 (2019).

Davydova, E., Zaffran, J., Dhaka, K., Toroker, M. & Dekel, D. Hydrogen oxidation on Ni-based electrocatalysts: the effect of metal doping. Catalysts 8, 454 (2018).

Obradovic, M. D. et al. The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. J. Electroanal. Chem. 671, 24–32 (2012).

Lu, S. Q. & Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 139, 5156–5163 (2017).

Hu, J., Kuttiyiel, K. A., Sasaki, K., Zhang, C. X. & Adzic, R. R. Determination of hydrogen oxidation reaction mechanism based on Pt–Had energetics in alkaline electrolyte. J. Electrochem. Soc. 165, J3355–J3362 (2018).

Sheng, W. C. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 1–6 (2015).

Wang, L., Zhou, Y., Yang, Y., Subramanian, A. & Rafailovich, M. Suppression of carbon monoxide poisoning in proton exchange membrane fuel cells via gold nanoparticle/titania ultrathin film heterogeneous catalysts. ACS Appl. Energy Mater. 2, 3479–3487 (2019).

Liu, Z., Ling, X. Y., Su, X. & Lee, J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108, 8234–8240 (2004).

St. John, S. et al. Ruthenium-alloy electrocatalysts with tunable hydrogen oxidation kinetics in alkaline electrolyte. J. Phys. Chem. C 119, 13481–13487 (2015).

Zheng, J., Sheng, W. C., Zhuang, Z. B., Xu, B. J. & Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602–e1501602 (2016).

Rebollar, L., Intikhab, S., Snyder, J. D. & Tang, M. H. Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling. J. Electrochem. Soc. 165, J3209–J3221 (2018).

Gasteiger, H. A., Markovic, N. M. & Ross, P. N. J. T. Jo. P. C. Jr H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J. Phys. Chem. B 99, 8290–8301 (1995).

Takeguchi, T. et al. Evidence of nonelectrochemical shift reaction on a CO-tolerant high-entropy state Pt–Ru anode catalyst for reliable and efficient residential fuel cell systems. J. Am. Chem. Soc. 134, 14508–14512 (2012).

Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

Li, J. K. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

Wang, J. X., Zhang, Y., Capuano, C. B. & Ayers, K. E. Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core–shell nanocatalysts. Sci. Rep. 5, 12220 (2015).

Schwämmlein, J. N., Rheinländer, P. J., Chen, Y., Freyer, K. T. & Gasteiger, H. A. Anode aging during PEMFC start-up and shut-down: H2–air fronts vs voltage cycles. J. Electrochem. Soc. 165, F1312–F1322 (2018).

Ohyama, J. et al. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 135, 8016–8021 (2013).

Mei, Q. S. & Lu, K. Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007).

Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

Abdel-Mageed, A. M., Widmann, D., Olesen, S. E., Chorkendorff, I. & Behm, R. J. Selective CO methanation on highly active Ru/TiO2 catalysts: identifying the physical origin of the observed activation/deactivation and loss in selectivity. ACS Catal. 8, 5399–5414 (2018).

Nong, S. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 140, 5719–5727 (2018).

Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000).

Kitchin, J. R., Norskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).

Christoffersen, E., Liu, P., Ruban, A., Skriver, H. L. & Nørskov, J. K. Anode materials for low-temperature fuel cells: a density functional theory study. J. Catal. 199, 123–131 (2001).

Koper, M. T. Hydrogen electrocatalysis: a basic solution. Nat. Chem. 5, 255–256 (2013).

Yu, Xin et al. One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis. CrystEngComm 19, 129–136 (2017).

Ding, W. et al. Space-confinement-induced synthesis of pyridinic-and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 52, 11755–11759 (2013).