Lattice Strain Advances Thermoelectrics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mori, 2017, Novel principles and nanostructuring methods for enhanced thermoelectrics, Small, 13, 1702013, 10.1002/smll.201702013
Liu, 2012, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601
Li, 2018, Low-Symmetry Rhombohedral GeTe Thermoelectrics, Joule, 2, 976, 10.1016/j.joule.2018.02.016
Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996
Pei, 2011, High thermoelectric figure of merit in heavy-hole dominated PbTe, Energy Environ. Sci., 4, 2085, 10.1039/c0ee00456a
Morelli, 2008, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors, Phys. Rev. Lett., 101, 035901, 10.1103/PhysRevLett.101.035901
Lin, 2017, High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons, Joule, 1, 816, 10.1016/j.joule.2017.09.006
Vining, 1995, Silicon Germanium, Chapter 4
Kim, 2015, Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109, 10.1126/science.aaa4166
Chen, 2017, Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics, Nat. Commun., 8, 13828, 10.1038/ncomms13828
Chen, 2017, Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence, Adv. Mater., 29, 1606768, 10.1002/adma.201606768
Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439
Appel, 2015, Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+δSn alloys following phase separation, J. Mater. Chem. C Mater. Opt. Electron. Devices, 3, 11653, 10.1039/C5TC03214H
Born, 1912, Vibrations in space gratings (molecular frequencies), Z. Phys., 13, 297
Hao, 2016, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300°C, Energy Environ. Sci., 9, 3120, 10.1039/C6EE02017H
Ravich, 1970
Cahill, 1992, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B Condens. Matter, 46, 6131, 10.1103/PhysRevB.46.6131
Yang, 2004, Theory of Thermal Conductivity, 1
Gelbstein, 2007, Highly efficient p-type Pb0.13Ge0.87Te doped by Bi2Te3, Phys. Status Solidi Rapid Res. Lett., 1, 232, 10.1002/pssr.200701160
Klemens, 1955, The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. A, 68, 1113, 10.1088/0370-1298/68/12/303
Carruthers, 1959, Scattering of phonons by elastic strain fields and the thermal resistance of dislocations, Phys. Rev., 114, 995, 10.1103/PhysRev.114.995
Klemens, 1958, Thermal conductivity and lattice vibrational modes, Solid State Phys., 7, 1, 10.1016/S0081-1947(08)60551-2
Božin, 2010, Entropically stabilized local dipole formation in lead chalcogenides, Science, 330, 1660, 10.1126/science.1192759
Lee, 2014, Resonant bonding leads to low lattice thermal conductivity, Nat. Commun., 5, 3525, 10.1038/ncomms4525
Cahill, 1989, Heat flow and lattice vibrations in glasses, Solid State Commun., 70, 927, 10.1016/0038-1098(89)90630-3
Khorsand Zak, 2011, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sci., 13, 251, 10.1016/j.solidstatesciences.2010.11.024
Hordon, 1961, X-ray measurements of dislocation density in deformed copper and aluminum single crystals, Acta Metall. Mater., 9, 237, 10.1016/0001-6160(61)90073-6
Ungár, 2004, Microstructural parameters from X-ray diffraction peak broadening, Scr. Mater., 51, 777, 10.1016/j.scriptamat.2004.05.007
Appel, 2013, Microstructural evolution effects of spark plasma sintered Ti0.3Zr0.35Hf0.35NiSn half-heusler compound on the thermoelectric properties, J. Electron. Mater., 42, 1340, 10.1007/s11664-012-2249-5
Dado, 2009, Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6)Te, J. Electron. Mater., 39, 2165, 10.1007/s11664-009-0980-3
Fritts, 1960, Lead Telluride Alloys and Junctions, Chapter 4
Biswas, 2011, Strained endotaxial nanostructures with high thermoelectric figure of merit, Nat. Chem., 3, 160, 10.1038/nchem.955
Hsu, 2004, Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963
Xin, 2017, Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1-xSbx thermoelectric materials, Nano Energy, 34, 428, 10.1016/j.nanoen.2017.03.012
Shuai, 2016, Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation, Proc. Natl. Acad. Sci. USA, 113, E4125, 10.1073/pnas.1608794113
Deng, 2018, Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries, Sci. Adv., 4, r5606, 10.1126/sciadv.aar5606
You, 2018
Zhou, 2018, Defect engineering for high-performance n-type PbSe thermoelectrics, J. Am. Chem. Soc., 140, 9282, 10.1021/jacs.8b05741
Hirsch, 1958, Dislocation loops in quenched aluminium, Philos. Mag., 3, 897, 10.1080/14786435808237028
Suzuki, 2001, Dislocation loop formation in nonstoichiometric (Ba,Ca)TiO3 and BaTiO3 ceramics, J. Am. Ceram. Soc., 84, 200, 10.1111/j.1151-2916.2001.tb00631.x
Goldsmid, 2009
Lyden, 1964, Measurement of the conductivity effective mass in semiconductors using infrared reflection, Phys. Rev., 134, A1106, 10.1103/PhysRev.134.A1106
Pei, 2012, Low effective mass leading to high thermoelectric performance, Energy Environ. Sci., 5, 7963, 10.1039/c2ee21536e
Blachnik, 1974, Thermodynamic properties of IV-VI compounds lead chalcogenides, Z. Naturforsch. B, 29, 625, 10.1515/znb-1974-9-1012
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Oganov, 2009, How to quantify energy landscapes of solids, J. Chem. Phys., 130, 104504, 10.1063/1.3079326
Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type andCaCl2-typeSiO2at high pressures, Phys. Rev. B, 78, 134106, 10.1103/PhysRevB.78.134106
Li, 2001, Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures, Acta Mater., 49, 937, 10.1016/S1359-6454(01)00011-8