Lattice Strain Advances Thermoelectrics

Joule - Tập 3 Số 5 - Trang 1276-1288 - 2019
Yixuan Wu1, Zhiwei Chen1, Pengfei Nan2, Fen Xiong3, Siqi Lin1, Xinyue Zhang1, Yue Chen3, Lidong Chen4, Binghui Ge2,5, Yanzhong Pei1
1Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China
3Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
4State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, CAS, Shanghai 200050, China
5Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Snyder, 2008, Complex thermoelectric materials, Nat. Mater., 7, 105, 10.1038/nmat2090

Mori, 2017, Novel principles and nanostructuring methods for enhanced thermoelectrics, Small, 13, 1702013, 10.1002/smll.201702013

Mao, 2018, Advances in thermoelectrics, Adv. Phys., 67, 69, 10.1080/00018732.2018.1551715

Liu, 2012, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions, Phys. Rev. Lett., 108, 166601, 10.1103/PhysRevLett.108.166601

Li, 2018, Low-Symmetry Rhombohedral GeTe Thermoelectrics, Joule, 2, 976, 10.1016/j.joule.2018.02.016

Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996

Pei, 2011, High thermoelectric figure of merit in heavy-hole dominated PbTe, Energy Environ. Sci., 4, 2085, 10.1039/c0ee00456a

Morelli, 2008, Intrinsically minimal thermal conductivity in cubic I-V-VI2 semiconductors, Phys. Rev. Lett., 101, 035901, 10.1103/PhysRevLett.101.035901

Liu, 2012, Copper ion liquid-like thermoelectrics, Nat. Mater., 11, 422, 10.1038/nmat3273

Lin, 2017, High thermoelectric performance of Ag9GaSe6 enabled by low cutoff frequency of acoustic phonons, Joule, 1, 816, 10.1016/j.joule.2017.09.006

Vining, 1995, Silicon Germanium, Chapter 4

Kim, 2015, Thermoelectrics. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics, Science, 348, 109, 10.1126/science.aaa4166

Chen, 2017, Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics, Nat. Commun., 8, 13828, 10.1038/ncomms13828

Chen, 2017, Lattice dislocations enhancing thermoelectric PbTe in addition to band convergence, Adv. Mater., 29, 1606768, 10.1002/adma.201606768

Biswas, 2012, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature, 489, 414, 10.1038/nature11439

Appel, 2015, Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35Ni1+δSn alloys following phase separation, J. Mater. Chem. C Mater. Opt. Electron. Devices, 3, 11653, 10.1039/C5TC03214H

Born, 1912, Vibrations in space gratings (molecular frequencies), Z. Phys., 13, 297

Cowley, 1968, Anharmonic crystals, Rep. Prog. Phys., 31, 123, 10.1088/0034-4885/31/1/303

Hao, 2016, High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300°C, Energy Environ. Sci., 9, 3120, 10.1039/C6EE02017H

Ravich, 1970

Cahill, 1992, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B Condens. Matter, 46, 6131, 10.1103/PhysRevB.46.6131

Yang, 2004, Theory of Thermal Conductivity, 1

Gelbstein, 2007, Highly efficient p-type Pb0.13Ge0.87Te doped by Bi2Te3, Phys. Status Solidi Rapid Res. Lett., 1, 232, 10.1002/pssr.200701160

Klemens, 1955, The scattering of low-frequency lattice waves by static imperfections, Proc. Phys. Soc. A, 68, 1113, 10.1088/0370-1298/68/12/303

Carruthers, 1959, Scattering of phonons by elastic strain fields and the thermal resistance of dislocations, Phys. Rev., 114, 995, 10.1103/PhysRev.114.995

Klemens, 1958, Thermal conductivity and lattice vibrational modes, Solid State Phys., 7, 1, 10.1016/S0081-1947(08)60551-2

Božin, 2010, Entropically stabilized local dipole formation in lead chalcogenides, Science, 330, 1660, 10.1126/science.1192759

Delaire, 2011, Giant anharmonic phonon scattering in PbTe, Nat. Mater., 10, 614, 10.1038/nmat3035

Lee, 2014, Resonant bonding leads to low lattice thermal conductivity, Nat. Commun., 5, 3525, 10.1038/ncomms4525

Cahill, 1989, Heat flow and lattice vibrations in glasses, Solid State Commun., 70, 927, 10.1016/0038-1098(89)90630-3

Khorsand Zak, 2011, X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods, Solid State Sci., 13, 251, 10.1016/j.solidstatesciences.2010.11.024

Hordon, 1961, X-ray measurements of dislocation density in deformed copper and aluminum single crystals, Acta Metall. Mater., 9, 237, 10.1016/0001-6160(61)90073-6

Ungár, 2004, Microstructural parameters from X-ray diffraction peak broadening, Scr. Mater., 51, 777, 10.1016/j.scriptamat.2004.05.007

Appel, 2013, Microstructural evolution effects of spark plasma sintered Ti0.3Zr0.35Hf0.35NiSn half-heusler compound on the thermoelectric properties, J. Electron. Mater., 42, 1340, 10.1007/s11664-012-2249-5

Dado, 2009, Structural evolution following spinodal decomposition of the pseudoternary compound (Pb0.3Sn0.1Ge0.6)Te, J. Electron. Mater., 39, 2165, 10.1007/s11664-009-0980-3

Fritts, 1960, Lead Telluride Alloys and Junctions, Chapter 4

Biswas, 2011, Strained endotaxial nanostructures with high thermoelectric figure of merit, Nat. Chem., 3, 160, 10.1038/nchem.955

Hsu, 2004, Cubic AgPb(m)SbTe(2+m): bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963

Xin, 2017, Mg vacancy and dislocation strains as strong phonon scatterers in Mg2Si1-xSbx thermoelectric materials, Nano Energy, 34, 428, 10.1016/j.nanoen.2017.03.012

Shuai, 2016, Higher thermoelectric performance of Zintl phases (Eu0.5Yb0.5)1-xCaxMg2Bi2 by band engineering and strain fluctuation, Proc. Natl. Acad. Sci. USA, 113, E4125, 10.1073/pnas.1608794113

Deng, 2018, Thermal conductivity in Bi0.5Sb1.5Te3+x and the role of dense dislocation arrays at grain boundaries, Sci. Adv., 4, r5606, 10.1126/sciadv.aar5606

You, 2018

Zhou, 2018, Defect engineering for high-performance n-type PbSe thermoelectrics, J. Am. Chem. Soc., 140, 9282, 10.1021/jacs.8b05741

Hirsch, 1958, Dislocation loops in quenched aluminium, Philos. Mag., 3, 897, 10.1080/14786435808237028

Suzuki, 2001, Dislocation loop formation in nonstoichiometric (Ba,Ca)TiO3 and BaTiO3 ceramics, J. Am. Ceram. Soc., 84, 200, 10.1111/j.1151-2916.2001.tb00631.x

Frank, 1957, Dislocations and point defects, Discuss. Faraday Soc., 23, 122, 10.1039/df9572300122

Goldsmid, 2009

Lyden, 1964, Measurement of the conductivity effective mass in semiconductors using infrared reflection, Phys. Rev., 134, A1106, 10.1103/PhysRev.134.A1106

Pei, 2012, Low effective mass leading to high thermoelectric performance, Energy Environ. Sci., 5, 7963, 10.1039/c2ee21536e

Blachnik, 1974, Thermodynamic properties of IV-VI compounds lead chalcogenides, Z. Naturforsch. B, 29, 625, 10.1515/znb-1974-9-1012

Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter, 54, 11169, 10.1103/PhysRevB.54.11169

Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865

Oganov, 2009, How to quantify energy landscapes of solids, J. Chem. Phys., 130, 104504, 10.1063/1.3079326

Togo, 2008, First-principles calculations of the ferroelastic transition between rutile-type andCaCl2-typeSiO2at high pressures, Phys. Rev. B, 78, 134106, 10.1103/PhysRevB.78.134106

Li, 2001, Mechanical properties of polycrystalline Ti3SiC2 at ambient and elevated temperatures, Acta Mater., 49, 937, 10.1016/S1359-6454(01)00011-8

Liu, 2015, Preparation and mechanical properties of graphene nanosheet reinforced alumina composites, Adv. Eng. Mater., 17, 28, 10.1002/adem.201400231