Lattice Boltzmann simulations in microfluidics: probing the no-slip boundary condition in hydrophobic, rough, and surface nanobubble laden microchannels
Tóm tắt
In this contribution, we review recent efforts on investigations of the effect of (apparent) boundary slip by utilizing lattice Boltzmann simulations. We demonstrate the applicability of the method to treat fundamental questions in microfluidics by investigating fluid flow in hydrophobic and rough microchannels as well as over surfaces covered by nano- or microscale gas bubbles.
Tài liệu tham khảo
Al-Zoubi A, Brenner G (2008) Simulating fluid flow over sinusoidal surfaces using the lattice Boltzmann method. Comput Math Appl 55:1365
Ansumali S, Karlin IV (2002) Kinetic boundary conditions in the lattice Boltzmann method. Phys Rev E 66:026311
Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid interface. Phys Rev Lett 82(23):4671
Baudry J, Charlaix E (2001) Experimental evidance for a large slip effect at a nonwetting fluid–solid interface. Langmuir 17:5232
Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006a) Mesoscopic two-phase model for describing apparent slip in micro-channel flows. Europhys Lett 74:651
Benzi R, Biferale L, Sbragaglia M, Succi S, Toschi F (2006b) Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys Rev E 74:021509
Bhatnagar PL, Gross EP, Krook M (1954) Model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3):511
Bocquet L, Barrat JL (2007) Flow boundary conditions from nano- to micro-scales. Soft Matter 3:685
Cheng JT, Giordano N (2002) Fluid flow throug nanometer scale channels. Phys Rev E 65:031206
Chibbaro S, Biferale L, Diotallevi F, Succi S, Binder K, Dimitrov D, Milchev A, Girardo S, Pisignano D (2008) Evidence of thin-film precursors formation in hydrokinetic and atomistic simulations of nano-channel capillary filling. Europhys Lett 84:44003
Choi CH, Westin KJ, Breuer KS (2003) Apparent slip in hydrophilic and hydrophobic microchannels. Phys Fluids 15(10):2897
Churaev NV, Sobolev VD, Somov AN (1984) Slippage of liquids over lyophobic solid surfaces. J Colloid Int Sci 97:574
Cieplak M, Koplik J, Banavar JR (2001) Boundary conditions at a fluid–solid interface. Phys Rev Lett 86:803
Cottin-Bizonne C, Jurine S, Baudry J, Crassous J, Restagno F, Charlaix E (2002) Nanorheology: an investigation of the boundary condition at hydrophobic and hydrophilic interfaces. Eur Phys J E 9:47
Cottin-Bizonne C, Barrat JL, Bocquet L, Charlaix E (2003) Low-friction flows of liquid at nanopatterned interfaces. Nat Mater 2:237
Cottin-Bizonne C, Barentin C, Charlaix E, Bocquet L, Barrat JL (2004) Dynamics of simple liquids at heterogeneous surfaces: molecular dynamics simulations and hydrodynamic description. Eur Phys J E 15:427
Craig VSJ, Neto C, Williams DRM (2001) Shear dependent boundary slip in an aqueous Newtonian liquid. Phys Rev Lett 87(5):054504
Davis AMJ, Lauga E (2009) Geometric transition in friction for flow over a bubble mattress. Phys Fluids 21:011701
Gennes P (2002) On fluid/wall slippage. Langmuir 18:3413
Guo Z, Shi B, Zhao TS, Zheng C (2007) Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows. Phys Rev E 76:056704
Harting J, Kunert C, Herrmann H (2006) Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels. Europhys Lett 75:328–334
Horbach J, Succi S (2006) Lattice Boltzmann versus molecular dynamics simulation of nanoscale hydrodynamic flows. Phys Rev Lett 96:224503
Huang H, Thorne DT, Schaap MG, Sukop MC (2007) Proposed approximation for contact angles in shan-and-chen-type multicomponent multiphase lattice Boltzmann models. Phys Rev E 76:066701
Hyväluoma J, Harting J (2008) Slip flow over structured surfaces with entrapped microbubbles. Phys Rev Lett 100:246001
Hyväluoma J, Koponen A, Raiskinmäki P, Timonen J (2007) Droplets on inclined rough surfaces. Eur Phys J E 23:289
Jabbarzadeh A, Atkinson JD, Tanner RI (2000) Effect of the wall roughness on slip and rheological properties of hexadecane in molecular dynamics simulation of couette shear flow between two sinusoidal walls. Phys Rev E 61:690
Knudsen M (1909) Experimentelle Bestimmung des Druckes gesättigter Quecksilberdämpfe bei 0o und höheren Temperaturen. Ann d Phys 29:179
Koplik J, Banavar JR, Willemsen JF (1989) Molecular dynamics of fluid flow at solid-surfaces. Phys Fluids 1:781
Kunert C, Harting J (2007) Roughness induced apparent boundary slip in microchannel flows. Phys Rev Lett 99:176001
Kunert C, Harting J (2008a) On the effect of surfactant adsorption and viscosity change on apparent slip in hydrophobic microchannels. Prog CFD 8:197
Kunert C, Harting J (2008b) Simulation of fluid flow in hydrophobic rough micro channels. Int J Comput Fluid Dyn 22:475
Kusumaatmaja H, Yeomans JM (2007) Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces. Langmuir 23:6019
Kusumaatmaja H, Leopoldes J, Dupuis A, Yeomans JM (2006) Drop dynamics on chemicaly patterned surfaces. Europhys Lett 73:740
Lauga E, Brenner MP (2004) Dynamic mechanism for aparrent slip on hydrophobic surfaces. Phys Rev E 70:026311
Lauga E, Brenner MP, Stone HA (2005) Microfluidics: the no-slip boundary condition, in handbook of experimental fluid dynamics, chap 15. Springer, Berlin
Lecoq N, Anthore R, Cickhocki B, Szymczak P, Feuillebois F (2004) Drag force on a sphere moving towards a corrugated wall. J Fluid Mech 513:247
McHale G, Newton MI (2004) Surface roughness and interfacial slip boundary condition for quarzcrystal microbalances. J Appl Phys 95:373
Nagayama G, Cheng P (2004) Effects of interface wettability on microscale flow by molecular dynamics simulation. Int J Heat Mass Transf 47:501
Navier CLMH (1823) Mémoire sur les lois du mouvement de fluids. Mem Acad Sci Inst Fr 6:389
Neto C, Craig VSJ, Williams DRM (2003) Evidence of shear-dependent boundary slip in Newtonian liquids. Eur Phys J E 12:71
Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859
Nie X, Doolen GD, Chen S (2002) Lattice-Boltzmann simulations of fluid flows in MEMS. J Stat Phys 107(112):279
Niu XD, Shu C, Chew YT (2004) A lattice Boltzmann BGK model for simulation of micro flows. Europhys Lett 67:600
Perot OJ, Rothstein JP (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16:4635
Pirat C, Sbragaglia M, Peters AM, Borkent BM, Lammertink RGH, Wesseling M, Lohse D (2008) Multiple time scale dynamics in the breakdown of superhydrophobicity. Europhys Lett 81:66002
Priezjev NV, Darhuber A, Troian S (2005) Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys Rev E 71:041608
Richardson S (1973) On the no-slip boundary condition. J Fluid Mech 59:707
Sbragaglia M, Succi S (2005) Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions. Phys Fluids 17:093602
Sbragaglia M, Benzi R, Biferale L, Succi S, Toschi F (2006) Surface roughness-hydrophobicity coupling in microchannel and nanochannel flows. Phys Rev Lett 97:204503
Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3):1815
Shan X, Chen H (1994) Simulation of nonideal gases and liquid–gas phase transitions by the lattice Boltzmann equation. Phys Rev E 49(4):2941
Sofonea V, Sekerka RF (2005) Diffuse-reflection boundary conditions for a thermal lattice Boltzmann model in two dimensions: evidence of temperature jump and slip velocity in microchannels. Phys Rev E 71:066709
Steinberger A, Cottin-Bizonne C, Kleimann P, Charlaix E (2007) High friction on a bubble mattress. Nat Mater 6:665
Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford
Succi S (2002) Mesoscopic modeling of slip motion at fluid–solid interfaces with heterogeneous catalysis. Phys Rev Lett 89(6):064502
Tabeling P (2005) Introduction to microfluidics. Oxford University Press, Oxford
Tang GH, Tao WQ, He YL (2005) Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions. Phys Fluids 17:058101
Thompson PA, Robbins MO (1990) Shear flow near solids: epitaxial order and flow boundary conditions. Phys Rev A 41:6830
Thompson PA, Troian S (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360
Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14:L9
Tretheway DC, Meinhart CD (2004) A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys Fluids 16(5):1509
Tretheway D, Zhu L, Petzold L, Meinhart C (2002) Examination of the slip boundary condition by μ-PIV and lattice Boltzmann simulation. In 2002 ASME international mechanical engineering congress & exposition, New Orleans, Louisiana
Varnik F, Raabe D (2006) Scaling effects in microscale fliuid flows at rough solid surfaces. Model Simul Mater Sci Eng 14:857
Varnik F, Dorner D, Raabe D (2006) Roughness-induced flow instability: a lattice Boltzmann study. J Fluid Mech 573:191
Vinogradova OI (1995) Drainage of a thin film confined between hydrophobic surfaces. Langmuir 11:2213
Vinogradova OI (1996) Possible implications of hydrophopic slippage on the dynamic measurements of hydrophobic forces. J Phys Condens Matter 8:9491
Vinogradova OI, Yakubov GE (2003) Dynamic effects on force mesurements. 2. Lubrication and the atomic force microscope. Langmuir 19:1227
Vinogradova OI, Yakubov GE (2006) Surface roughness and hydrodynamic boundary conditions. Phys Rev E 73:045302(R)
Zhang J, Kwok DY (2004) Apparent slip over a solid–liquid interface with a no-slip boundary condition. Phys Rev E 70:056701
Zhu Y, Granick S (2001) Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys Rev Lett 87:096105
Zhu L, Tretheway D, Petzold L, Meinhart C (2005) Simulation of fluid slip at 3d hydrophobic microchannel walls by the lattice Boltzmann method. J Comput Phys 202:181