Lattice Boltzmann methods for global linear instability analysis

Theoretical and Computational Fluid Dynamics - Tập 31 Số 5-6 - Trang 643-664 - 2017
José Pedro López Pérez1, Alfonso Zamorano Aguilar2, Vassilios Theofilis3
1School of Aeronautics, Universidad Politécnica de Madrid, Madrid, Spain
2School of Aerospace Transport and Manufacturing, Cranfield University, Cranfield, UK
3School of Engineering, The Quadrangle, The University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206(2), 536–558 (2005)

Alexander, F.J., Chen, S., Sterling, J.D.: Lattice Boltzmann thermohydrodynamics. Phys. Rev. E 47, R224952 (1993)

Anupindi, K., Lai, W., Frankel, S.: Characterization of oscillatory instability in lid driven cavity flows using lattice Boltzmann method. Comput. Fluids 92, 721 (2014)

Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222(3), 145–197 (1992)

Bergamo, L.F., Gennaro, E.M., Theofilis, V., Medeiros, M.A.F.: Compressible modes in a square lid-driven cavity. Aerosp. Sci. Technol. 44, 125–134 (2015)

Blackburn, H.M.: Study of two-dimensional flow past an oscillating cylinder. J. Fluid Mech. 385, 255–286 (1999)

Blackburn, H.M.: Three-dimensional instability and state selection in an oscillatory axisymmetric swirling flow. Phys. Fluids 14(11), 3983–3996 (2002)

Boppana, V.B.L., Gajjar, J.S.B.: Global flow instability in a lid-driven cavity. Int. J. Numer. Methods Fluids 62(8), 827–853 (2009)

Bouzidi, M., d’Humieres, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann equation on a two-dimensional rectangular grid. J. Comput. Phys. 172, 704–717 (2001)

Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 3452–3459 (2001)

Bridges, T., Morris, P.: Differential eigenvalue problems in which the parameter appears nonlinearly. J. Comput. Phys. 55, 437–460 (1984)

Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Fundamentals in Single Domains. Springer, Berlin (2006)

Chang, H.-W., Hong, P.-Y., L-S, Lin, Lin, C.-A.: Simulations of flow instability in three dimensional deep cavities with multi relaxation time lattice Boltzmann method on graphic processing units. Comput. Fluids 88, 866–871 (2013)

Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge Mathematical Library, Cambridge (1991)

Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

Chen, Y., Ohashi, H., Akiyama, M.: Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E 50, 2776–2783 (1994)

Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

d’Humieres, D.: Generalized lattice Boltzmann equations. In: Shizgal, B.D., Weaver, D.P. (eds.) Rarefied Gas Dynamics: Theory and Simulations. Prog. Aeronaut. Astronaut., 159, pp. 450–458 (1992)

d’Humieres, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360(1792), 437–451 (2002)

Fasel, H.: Investigation of the stability of boundary layers by a finite-difference model of the Navier–Stokes equations. J. Fluid Mech. 78, 335–383 (1976)

Feldmana, A.Y., Gelfgat, A.Y.: Oscillatory instability of a three-dimensional lid-driven flow in a cube. Phys. Fluids 22, 093602 (2010)

Ghia, U., Ghia, L., Shin, C.T.: High-re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48, 387–411 (1982)

Gómez, F., Gómez, R., Theofilis, V.: On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp. Sci. Technol. 32, 223–234 (2014)

He, X.Y., Luo, L.-S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88, 927–944 (1997)

He, X.Y., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

Hecht, M., Harting, J.: Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann. J. Stat. Mech. Theory Exp. 2010, P01018 (2010)

Higuera, F.J., Jiménez, J.: Boltzmann approach to lattice gas simulations. Europhys. Lett. 9, 663–668 (1989)

Higuera, F.J., Succi, S.: Simulating the flow around a circular cylinder with a lattice Boltzmann. Europhys. Lett. 9, 345–349 (1989)

Hou, S.: Lattice Boltzmann method for incompressible viscous flow. Ph.D. Thesis, Kansas State Univ., Manhattan (1995)

Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118, 329–347 (1995)

James, D., Shiyi, C.: Stability analysis of lattice Boltzmann methods. Publication: eprint. arXiv:comp-gas/9306001 Publication Date: 06/1993

Junk, M., Yang, Z.: Asymptotic analysis of lattice Boltzmann outflow treatments. Commun. Comput. Phys. 9(5), 1117–1127 (2011)

Kleiser, L., Schumann, U.: Treatment of incompressibility and boundary conditions in 3D numerical spectral simulations of plane channel flows. In: Hirschel, E.H. (Vieweg and 1980) Braunschweig, S. (eds.), Proceedings of the 3rd GAMM Conference on Numerical Methods in Fluid Mechanics, pp. 165–173 (1980)

Krause, M.: Fluid flow simulation and optimisation with lattice Boltzmann methods on high performance computers: application to the human respiratory system. Ph.D. Thesis, Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH), Kaiserstrae 12, 76131 Karlsruhe (2010)

Krause, M.J., Thäter, G., Heuveline, V.: Adjoint-based fluid flow control and optimisation with lattice Boltzmann methods. Comput. Math. Appl. 65, 945–960 (2013)

Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

Lavalle, P., Boon, J.P., Noullez, A.: Boundaries in lattice gas flows. Phys. D 47, 233–240 (1991)

Lehoucq, R.B., Sorensen, D.C., Yang, C.: Arpack Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Piladelphia (1998)

McNamara, G.R., Zanneti, G.: Use of the Boltzmann equation to simulate lattice-gas automata. Phys. Rev. Lett. 61, 2332–2335 (1988)

McNamara, G.R., Garcia, A.L., Alder, B.J.: Stabilization of thermal lattice Boltzmann models. J. Stat. Phys. 81, 395–408 (1995)

Niu, X.D., Shu, C., Chew, Y.T., Wang, T.G.: Investigation of stability and hydrodynamics of different lattice Boltzmann models. J. Stat. Phys. 177(3/4), 665–680 (2004)

Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., Joseph, D.: The lattice Boltzmann equation method: theoretical interpretation, numerics and implications. Int. J. Multiph. Flow 29, 117–169 (2003)

Orszag, S.A., Kells, L.C.: Transition to turbulence in plane poiseuille flow and plane couette flow. J. Fluid Mech. 96, 159–205 (1980)

Qian, Y.H.: Simulating thermohydrodynamics with lattice bgk models. J. Sci. Comput. 8, 231–242 (1993)

Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1993)

Shan, X., Yuan, X.-F., Chen, H.: Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation. J. Fluid Mech. 550, 413–441 (2006)

Shapeev, V.P., Vorozhtsov, E.V.: Cas application to the construction of the collocations and least residuals methods for the solution of 3D Navier–Stokes equations. In: Computer Algebra in Scientific Computing: 15th International Workshop, CASC 2013, Berlin, 9–13 Sept (2013)

Sterling, J.D., Shiyi, C.: Stability analysis of lattice Boltzmann methods. J. Comput. Phys. 123, 196–206 (1996)

Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford (2001)

Tekitek, M.M., Bouzidi, M., Dubois, F., Lallemand, P.: Adjoint lattice Boltzmann equation for parameter identification. Comput. Fluids 35, 805–813 (2006)

Theofilis, V.: On steady state flow solutions and their non-parallel global linear instability. In: Dopazo, C., et al. (eds.) Advances in Turbulence VIII. Proceedings of the 8th European Turbulence Conference, pp. 35–38. Barcelona (2000)

Theofilis, V.: Global linear instability. Annu. Rev. Fluid Mech. 43, 319–352 (2011)

Vergnault, E., Malaspinas, O., Sagaut, P.: A lattice Boltzmann method for nonlinear disturbances around an arbitrary base flow. J. Comput. Phys. 231, 8070–8082 (2012)

Vergnault, E., Sagaut, P.: An adjoint-based lattice Boltzmann method for noise control problems. J. Comput. Phys. 276, 39–61 (2014)

Williamson, C.H.K.: Defining a universal and continuous Strouhal–Reynolds number relationship for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 2742–2744 (1988)

Wolfram, S.: Cellular automaton fluids. 1: basic theory. J. Stat. Phys. 45, 471–526 (1986)

Yang, Z.: Lattice Boltzmann outflow treatments: convective conditions and others. Comput. Math. Appl. 65, 160–171 (2013)

Zhang, L., Zeng, Z., Xie, H., Zhang, Yo, Lu, Y., Yoshikawa, A., Mizuseki, H., Kawazoe, Y.: A comparative study of lattice Boltzmann models for incompressible flow. Comput. Math. Appl. 68, 1446–1466 (2014)

Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9(6), 1591–1598 (1997)