Late Quaternary palaeoenvironmental reconstruction of a Chobe Enclave landform (NW Botswana) based on pedological and geochemical indices

Peter N. Eze1,2, Loago N. Molwalefhe1
1Department of Earth and Environmental Science, Botswana International University of Science and Technology, Palapye, Botswana
2Division of Soil Science and Geoecology, Institute of Environmental Science and Geography, University of Potsdam, Campus Golm, Potsdam, Germany

Tóm tắt

The importance of pedogenesis in understanding soil distribution patterns in current and past geologic periods is well established, but field identification of pedogenic features is always a big challenge in pedostratigraphic units because of post burial alterations. An ~ 8 m landform presents a complete pedostratigraphic section at Chobe Enclave alluvial plain, northern Botswana. This study investigated pedological indices including morphological, physico-chemical, geochemical and mineralogical properties of the landform, with the aim of reconstructing the palaeoenvironments and palaeoclimate during the evolution of the landform. SiO2 is the dominant elemental oxide (40.6–98.9 wt%) followed by CaO (0.02–29.6 wt%), Fe2O3 (0.48–2.64 wt%), MgO (0.14–1.81 wt%) and Al2O3 (0.29–0.93 wt%). The clay-sized minerals present are quartz, calcite, sepiolite and kaolinite. The carbonates had strong positive correlation with Sr (R2 = 0.935), while Fe2O3 had weak positive correlation with TiO2 (R2 = 0.0187). Gradual obliteration of the sedimentary layers and the formation of indurated illuvial horizon indicate secondary recrystallisation of the palustrine carbonates. There is evidence of two cyclic intervals that produced specific two pedostratigraphic levels and two soil orders—Entisols and Calcisols, and therein pedofeatures and geochemical variations suggest long-term climate change, i.e. from wet to dry in the Chobe Enclave in the late Quaternary. This study has presented a new calibration of the Chobe Enclave landform to include pedogenic horizons instead of a sedimentary bed of palustrine carbonate deposit lying over fine sediments in a fluvial system, as previously documented.

Tài liệu tham khảo

Alonso-Zarza, A. (2003). Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth-Science Reviews, 60, 261–298. https://doi.org/10.1016/S0012-8252(02)00106-X Beverly, E. J., Lukens, W. E., & Stinchcomb, G. E. (2018). Paleopedology as a Tool for reconstructing paleoenvironments and paleoecology. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), Methods in paleoecology (pp. 151–183). Springer. https://doi.org/10.1007/978-3-319-94265-0_9 Blott, S. J., & Pye, K. (2001). GRADSTAT: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surfaces Processes and Landforms, 26, 1237–1248. https://doi.org/10.1002/esp.261 Brimhall, G. H., & Dietrich, W. E. (1987). Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis. Geochimica Et Cosmochimica Acta, 51(3), 567–587. https://doi.org/10.1016/0016-7037(87)90070-6 Burrough, S. L., Thomas, D. S., & Singarayer, J. S. (2009). Late Quaternary hydrological dynamics in the Middle Kalahari: Forcing and feedbacks. Earth-Science Reviews, 96(4), 313–326. https://doi.org/10.1016/j.earscirev.2009.07.001 Cleveland, D. M., Atchley, S. C., & Nordt, L. C. (2007). Continental sequence-stratigraphy of the Late Triassic (Norian-Rhaetian) Chinle strata, northern New Mexico: Allo- and autocyclic origins of paleosol-bearing alluvial successions. Journal of Sedimentary Research, 77, 909–924. https://doi.org/10.2110/jsr.2007.082 Diaz, N., Armitage, S. J., Verrecchia, E. P., & Herman, F. (2019). OSL dating of a carbonate island in the Chobe Enclave, NW Botswana. Quaternary Geochronology, 49, 172–176. https://doi.org/10.1016/j.quageo.2018.03.001 Diaz, N., Mahinga, A., VanThuyne, J., Verrecchia, E., & Verrecchia, K. (2016). Primary fieldwork investigation on the carbonate islands from the Chobe Enclave. Unpublished work. Eze, P. N., Knight, J., & Evans, M. (2016a). Tracing recent environmental changes and pedogenesis using geochemistry and micromorphology of alluvial soils, Sabie-Sand River Basin, South Africa. Geomorphology, 268, 312–321. https://doi.org/10.1016/j.geomorph.2016.06.023 Eze, P. N., & Meadows, M. E. (2014a). Texture contrast profile with stonelayer in the Cape Peninsula, South Africa: Autochthony and polygenesis. CATENA, 118, 103–114. https://doi.org/10.1016/j.catena.2014.01.014 Eze, P. N., & Meadows, M. E. (2014b). Mineralogy and micromorphology of a late Neogene paleosol sequence at Langebaanweg, South Africa: Inference of paleoclimates. Paleogeography, Paleoclimatology, Paleoecology, 409, 205–216. https://doi.org/10.1016/j.palaeo.2014.05.008 Eze, P. N., & Meadows, M. E. (2014c). Multi-proxy palaeosol evidence for late Quaternary (MIS 4) environmental and climate shifts on the coasts of South Africa. Quaternary International, 343, 159–168. https://doi.org/10.1016/j.quaint.2013.11.026 Eze, P. N., & Meadows, M. E. (2015). Geochemistry and paleoclimatic reconstruction of a paleosol sequence at Langebaanweg, South Africa. Quaternary International, 376, 75–83. https://doi.org/10.1016/j.quaint.2013.09.048 Eze, P. N., Molwalefhe, L. N., & Kebonye, N. M. (2021). Geochemistry of soils of a deep pedon in the Okavango Delta, NW Botswana: Implications for pedogenesis in semi-arid regions. Geoderma Regional, 24, e00352. https://doi.org/10.1016/j.geodrs.2020.e00352 Eze, P. N., Udeigwe, T. K., & Umeugochukwu, O. P. (2016b). Paleosol nomenclature and classification for South Africa: A new perspective. Geoderma Regional, 7(3), 323–329. https://doi.org/10.1016/j.geodrs.2016.06.004 Fiantis, D., Malone, B., Pallasser, R., Van Ranst, E., & Minasny, B. (2017). Geochemical fingerprinting of volcanic soils used for wetland rice in West Sumatra, Indonesia. Geoderma Regional, 10, 48–63. https://doi.org/10.1016/j.geodrs.2017.04.004 Food and Agricultural Organisation (FAO). (2001). Lecture Notes on major soils of the World. World Soil Resources Report, (9). Food and Agricultural Organisation (FAO) (2006). Guideline for Soil Description. 4th ed. FAO, Rome, Italy (109 pp). Grove, A. T. (1969). Landforms and climatic change in the Kalahari and Ngamiland. The Geographical Journal, 135(2), 191–212. https://doi.org/10.2307/1796824 Holliday, V. T., Mandel, R. D., & Beach, T. (2016). Soil stratigraphy. In A. S. Gilbert (Ed.), Encyclopedia of geoarchaeology. Encyclopedia of earth sciences series. Springer. Huntsman-Mapila, P., Ringrose, S., Mackay, A. W., Downey, W. S., Modisi, M., Coetzee, S. H., Tiercelin, J. J., Kampunzu, A. B., & Vanderpost, C. (2006). Use of the geochemical and biological sedimentary record in establishing paleo-environments and climate change in the Lake Ngami basin, NW Botswana. Quaternary International, 148, 51–64. https://doi.org/10.1016/j.quaint.2005.11.029 Imbellone, P. A. (2011). Classification of paleosols. Geociencias, 30(1), 5–13. Jenny, H. (1994). Factors of soil formation: A system of quantitative pedology (p. 191). Courier Corporation. Jones, B. (2002). Chobe enclave, Botswana—lessons learnt from a CBNRM project 1993–2002. Gaborone: IUCN/SNV CBNRM Support Programme. Jones, C. R. (1980). The geology of the Kalahari. Botswana Notes and Records, 12, 1–14. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. CRC Press Inc. Kebonye, N. M., & Eze, P. N. (2019). Zirconium as a suitable reference element for estimating potentially toxic element enrichment in treated wastewater discharge vicinity. Environmental Monitoring and Assessment, 191(11), 1–5. https://doi.org/10.1007/s10661-019-7812-6 Kücüküysal, C., & Kapur, S. (2014). Mineralogical, geochemical and micromorphological evaluation of the Plio-Quaternary paleosols and calcretes from Karahamzall, Ankara (Central Turkey). GeologicaCarpathica, 65, 241–253. https://doi.org/10.2478/geoca-2014-0014 Marriot, S. B., & Wright, V. P. (1993). Palaeosols as indicators of geomorphic stability in two Old Red Sandstone alluvial suites, South Wales. Journal of the Geological Society of London, 150(1993), 1109–1120. https://doi.org/10.1144/gsjgs.150.6.1109 Matshameko, Y., Kebonye, N. M., & Eze, P. N. (2022). Ethnopedological knowledge and scientific assessment of earthenware pottery-making soils of southern Botswana for natural resource management. Geoderma Regional, 31, e00580. https://doi.org/10.1016/j.geodrs.2022.e00580 Meyer-Heintze, S., Sprafke, T., Krech, M., Beigel, R., Nadler, M., Kriens, B., & Terhorst, B. (2020). Pedosedimentary and geoarcheological archives from clay-dominated sinkhole infillings in Middle Franconia, Germany. CATENA, 195, 104893. https://doi.org/10.1016/j.catena.2020.104893 Mokatse, T., Diaz, N., Shemang, E., Van Thuyne, J., Vittoz, P., Vennemann, T., & Verrecchia, E. P. (2022). Landscapes and landforms of the Chobe Enclave, Northern Botswana. Landscapes and landforms of Botswana (pp. 91–116). Springer International Publishing. https://doi.org/10.1007/978-3-030-86102-5_6 Moore, D.M. and Reynolds, R.C. (1997). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, 378 pp. Moore, A. E., Cotterill, F. P., & Eckardt, F. D. (2012). The evolution and ages of Makgadikgadi palaeo-lakes: Consilient evidence from Kalahari drainage evolution south-central Africa. South African Journal of Geology., 115(3), 385–413. https://doi.org/10.2113/gssajg.115.3.385 NACSN (North American Commission on Stratigraphic Nomenclature). (2005). North American stratigraphic code. American Association of Petroleum Geologists Bulletin, 89(11), 1547–1591. https://doi.org/10.1306/07050504129 Nesbitt, H., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885), 715–717. https://doi.org/10.1038/299715a0 Parker, A. (1970). An index of weathering for silicate rocks. Geological Magazine, 107(50), 1–504. https://doi.org/10.1017/S0016756800058581 Price, J. R., & Velbel, M. A. (2001). An assessment of weathering indices and their potential applications to heterogeneous weathering profiles and paleosols. In Eleventh Annual VM Goldschmidt Conference (p. 3688). Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3–4), 397–416. https://doi.org/10.1016/j.chemgeo.2002.11.001 Reynolds, R. L., Belnap, J., & Reheis, M. C. (2001). Aeolian dust in Colorado Plateau soils: Nutrient inputs and recent change insource. Proceedings of the National Academy of Sciences of the United States of America, 98, 7123–7127. https://doi.org/10.1073/pnas.12109429 Reynolds, R. L., Rosenbaum, J. G., Rapp, J., Kerwin, M. W., Bradbury, J. P., Colman, S., & Adam, D. (2004). Record of late Pleistocene glaciation and deglaciation in the southern Cascade Range. I. Petrological evidence from palustrine sediment in Upper Klamath Lake, southern Oregon. Journal of Paleolimnology, 31(2), 217–233. https://doi.org/10.1023/B:JOPL.0000019230.42575.03 Romanens, R., Pellacani, F., Mainga, A., Fynn, R., Vittoz, P., & Verrecchia, E. P. (2019). Soil diversity and major soil processes in the Kalahari basin, Botswana. Geoderma Regional, 19, e00236. https://doi.org/10.1016/j.geodrs.2019.e00236 Singh, V., Stanier, S., Bienen, B., & Randolph, M. F. (2021). Modelling the behaviour of sensitive clays experiencing large deformations using non-local regularisation techniques. Computers and Geotechnics, 133, 104025 Soil Science Division Staff. (2017). Soil survey manual. USDA Handbook, 18, 120–131. Stockmann, U., Cattle, S. R., Minasny, B., & McBratney, A. B. (2016). Utilizing portable X-ray fluorescence spectrometry for in-field investigation of pedogenesis. Catena, 139, 220–231. Tabor, N. J., & Myers, T. S. (2015). Paleosols as indicators of paleoenvironment and paleoclimate. Annual Review of Earth and Planetary Sciences, 43, 333–361. https://doi.org/10.1146/annurev-earth-060614-105355 Tanner, L. H. (2010). Continental carbonates as indicators of paleoclimate. Developments in Sedimentology, 62, 179–214. https://doi.org/10.1016/S0070-4571(09)06204-9 Targulian, V. O., & Krasilnikov, P. V. (2007). Soil system and pedogenic processes: Self-organization, time scales, and environmental significance. Catena, 71(3), 373–381. Winchester, J. A., & Floyd, P. A. (1977). Geochemical magma type discrimination: Application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters, 28(3), 459–469. https://doi.org/10.1016/0012-821X(76)90207-7 Zamanian, K., Pustovoytov, K., & Kuzyakov, Y. (2016). Pedogenic carbonates: Forms and formation processes. Earth-Science Reviews, 157, 1–17