Late Quaternary changes in sediment composition on the NE Greenland margin (~73° N) with a focus on the fjords and shelf

Boreas - Tập 45 Số 3 - Trang 381-397 - 2016
John T. Andrews1, Ruediger Stein2, Matthias Moros3, Kerstin Perner3
1INSTAAR and Department of Geological Sciences, University of Colorado, Boulder, CO 80309, USA
2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27568 Bremerhaven, Germany
3Leibniz Institute for Baltic Sea Research Warnemünde, 18119 Rostock, Germany

Tóm tắt

In order to document changes in Holocene glacier extent and activity in NE Greenland (~73° N) we study marine sediment records that extend from the fjords (PS2631 and PS2640), across the shelf (PS2623 and PS2641), to the Greenland Sea (JM07‐174GC). The primary bedrock geology of the source areas is the Caledonian sediment outcrop, including Devonian red beds, plus early Neoproterozoic gneisses and early Tertiary volcanics. We examine the variations in colour (CIE*), grain size, and bulk mineralogy (from X‐ray diffraction of the <2 mm sediment fraction). Fjord core PS2640 in Sofia Sund, with a marked red hue, is distinct in grain size, colour and mineralogy from the other fjord and shelf cores. Five distinct grain‐size modes are distinguished of which only one is associated with a coarse ice‐rafting signal – this mode is rare in the mid‐ and late Holocene. A sediment unmixing program (SedUnMixMC) is used to characterize down‐core changes in sediment composition based on the upper late Holocene sediments from cores PS2640 (Sofia Sund), PS2631 (Kaiser Franz Joseph Fjord) and PS2623 (south of Shannon Is), and surface samples from the Kara Sea (as an indicator of transport from the Russian Arctic shelves). Major changes in mineral composition are noted in all cores with possible coeval shifts centred c. 2.5, 4.5 and 7.5 cal. ka BP (±0.5 ka) but are rarely linked with changes in the grain‐size spectra. Coarse IRD (>2 mm) and IRD‐grain‐size spectra are rare in the last 9–10 cal. ka BP and, in contrast with areas farther south (~68° N), there is no distinct IRD signal at the onset of neoglaciation. Our paper demonstrates the importance of the quantitative analysis of sediment properties in clarifying source to sink changes in glacial marine environments.

Từ khóa


Tài liệu tham khảo

10.1007/978-94-009-4109-0

10.1177/0959683613505343

10.1177/0959683610378877

10.1038/ngeo1349

Andrews J. T., 2011, Sediment Transport, 225

10.1016/j.margeo.2011.10.007

10.2307/1551864

10.5194/cp-10-325-2014

Andrews J. T., 2002, Glacier‐influenced Sedimentation at High‐Latitude Continental Margins, 305

Andrews J. T., 2014, Results of bulk sediment X‐ray diffraction analysis and quantification of mineral phases based on the RockJock and on the QUAX quantitative analysis

10.1016/j.margeo.2014.08.005

10.1016/j.quascirev.2013.08.019

10.1002/jqs.2787

10.1016/S0025-3227(98)00029-2

10.1177/0959683608098953

10.1016/j.quascirev.2010.06.001

Andrews J. T., 1996, Late Quaternary Paleoceanography of North Atlantic Margins, 153

10.1002/(SICI)1099-1417(199701/02)12:1<1::AID-JQS288>3.0.CO;2-T

Andrews J. T., 2015, Data for: Late Quaternary changes in sediment composition in NE Greenland Fjords, Shelf, and Slope

Balsam W. L., 1991, Sediment dispersal in the Atlantic Ocean: evaluation by visible light spectra, Review Aquatic Science, 4, 411

10.1016/S0025-3227(98)00033-4

10.1016/S0921-8181(01)00116-3

10.1002/jqs.670

10.1017/S0032247412000277

10.2307/1552605

Birks H. J. B., 1985, Numerical Methods in Quaternary Pollen Analysis, 317

10.1038/ngeo1481

10.5194/cp-9-2651-2013

10.1002/esp.261

10.1126/science.267.5200.1005

10.1126/science.1065680

10.1016/j.cageo.2006.11.017

10.1029/2002JC001350

10.1029/2001PA000639

10.1038/ngeo1629

10.1016/j.gloplacha.2009.02.007

Davis J. C., 1986, Statistics and Data Analysis in Geology, 636

10.1029/2004JC002740

10.1016/j.sedgeo.2011.09.014

10.1007/978-3-540-24775-3_50

Dixon W. J., 1957, Introduction to Statistical Analysis, 488

Dowdeswell J. A., 1990, Glacimarine environments: processes and sediments, Geological Society of London, Special Publication, 53, 155

10.1017/S0022143000034900

10.1016/j.quascirev.2014.06.001

D. D. Eberl 2003

10.2138/am-2004-11-1225

10.1144/GSL.SP.2002.203.01.09

10.1002/jqs.1231

10.1126/science.1202760

Ghosh S., 2013, Comparative analysis of K‐means and Fuzzy C‐means algorithms, International Journal of Advanced Computer Science and Technology, 4, 35

10.1016/S0025-3227(02)00321-3

Grobe H., 1987, A simple method for the determination of ice‐rafted debris in sediment cores, Polarforschung, 57, 123

10.1029/2004wr003299

10.1016/j.quascirev.2007.08.001

10.1111/j.1468-0459.2007.00318.x

10.1144/0060887

10.1111/j.1751-8369.2002.tb00084.x

10.1130/2008.1202(14)

10.1130/2008.1202(02)

Higgins A. K., 2008, The Greenland Caledonides. Evolution of the Northeast Margin of Laurentia, 368, 10.1130/MEM202

10.1080/11035897309455434

10.1111/j.1502-3885.1981.tb00487.x

10.1080/11035898309452590

H.‐W. Hubberten 1995

Husum K., 2007, Marine Geological Cruise to East Greenland Margin. Cruise Report: SciencePub UiT 2007/2, 31

10.1016/j.quascirev.2011.01.016

10.1002/jqs.692

10.1016/j.quascirev.2005.04.006

10.1191/0959683602hl519rp

10.5670/oceanog.2011.52

10.1144/SP398.6

10.1029/2001JD900087

10.1016/j.quascirev.2003.09.007

10.1088/0034‐4885/78/4/046801

Kierdorf C.2006:Variability of organic caron along the ice‐covered polar continental margin of East Greenland. Ph.D. thesis University of Bremen 241 pp.

Koch L.1945:The East Greenland Ice.Meddelelser om Grønland 130 346 pp.

1998, Multi‐Variate Statistical Package, 127

10.1002/jqs.3390090108

10.1130/2008.1202(11)

10.1007/978-3-642-55905-1

Marienfeld P., 1991, 14C Dates of glacimarine sediments from Scorsby Sund, East Greenland, LUNDQUA, 33, 165

Marienfeld P., 1992, Postglacial sedimentary history of Scorsby Sund, East Greenland, Polarforschung, 60, 181

Minasny B.&McBratney A. B.2002:FuzMe version 3.0. Australian Center for Precision Agriculture University of Sydney.

10.1029/2005PA001214

10.1126/science.aac7111

10.1016/j.quascirev.2012.04.024

10.1016/0025-3227(94)90181-3

Nuttall A.‐M.1993:Glaciological Investigations in East Greenland using Digital LANDSAT imagery. M.Sc. thesis University of Cambridge 107 pp.

10.1016/j.margeo.2004.02.009

10.1177/0959683612460785

10.1016/j.quascirev.2015.10.007

10.1007/s00367-002-0090-1

10.1002/ggge.20247

10.1130/0091-7613(2002)030<0555:OCAIDI>2.0.CO;2

10.1016/j.quascirev.2007.01.019

10.1016/j.sedgeo.2003.11.023

10.1029/1999GL900065

10.3189/172756401781818554

10.1016/S0883-2927(01)00066-X

10.1017/S0033822200034202

Reyment R. A., 1999, Aspects of Multivariate Statistical Analysis in Geology, 285

10.1175/1520-0442(2003)016<2782:FSIEDT>2.0.CO;2

10.1029/2010jf001847

10.1007/s005310000110

Stein R., 2008, Arctic Ocean Sediments. Processes, Proxies, and Paleoenvironment, 608

10.1016/j.quascirev.2003.12.004

Stein R., 2012, Proxy reconstruction of Arctic Ocean sea ice history: ‘from IRD to IP25’, Polarforschung, 82, 37

10.1007/BF01204387

10.1016/j.gloplacha.2005.06.001

10.1139/e82-085

Villaseñor T., 2014, Data report: quantitative powder X‐ray diffraction analysis from the Canterbury Basin, Expedition 317, Proceedings of the International Ocean Drilling Program, 317, 1

10.1002/jqs.2565

10.5194/tc-6-211-2012

Weidick A.&Bennike O.2007:Quaternary glaciation history and glaciology of Jakobshavn Isbræ and the Disko Bugt region West Greenland: a review.Geological Survey of Denmark and Greenland Bulletin 14 80 pp.