Late Paleozoic tectonic transition in East Junggar, NW China: Insights from I- and A-type granitic magmatism in the Karamaili region
Tài liệu tham khảo
Barbarin, 1992, Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas, Earth Environ. Sci. Trans. Royal Soc. Edinburgh, 83, 145, 10.1017/S0263593300007835
Bonin, 2007, A-type granites and related rocks: Evolution of a concept, problems and prospects, Lithos, 97, 1, 10.1016/j.lithos.2006.12.007
Bouvier, 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sci. Lett., 273, 48, 10.1016/j.epsl.2008.06.010
Chappell, 1992, I- and S-type granites in the Lachlan Fold Belt, Earth Environ. Sci. Trans. Royal Soc. Edinburgh, 83, 1, 10.1017/S0263593300007720
Chen, 2004, Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence, J. Asian Earth Sci., 23, 691, 10.1016/S1367-9120(03)00118-4
Clemens, 1986, Origin of an A-type granite: experimental constraints, Am. Mineral., 71, 317
Clemens, 2009, Sources of post-orogenic calcalkaline magmas: the Arrochar and Garabal Hill–Glen Fyne complexes, Scotland, Lithos, 112, 524, 10.1016/j.lithos.2009.03.026
Clemens, 2016, The Tynong pluton, its mafic synplutonic sheets and igneous microgranular enclaves: the nature of the mantle connection in I-type granitic magmas, Contrib. Mineral. Petrol., 171, 35, 10.1007/s00410-016-1251-y
Collins, 1982, Nature and origin of A-type granites with particular reference to southeastern Australia, Contrib. Mineral. Petrol., 80, 189, 10.1007/BF00374895
Dan, 2014, An early Permian (ca. 280Ma) silicic igneous province in the Alxa Block, NW China: a magmatic flare-up triggered by a mantle-plume?, Lithos, 204, 144, 10.1016/j.lithos.2014.01.018
De Biévre, 1993, Table of the isotopic compositions of the elements, Int. J. Mass Spectrom. Ion Process., 123, 149, 10.1016/0168-1176(93)87009-H
DePaolo, 1981, Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic, Nature, 291, 193, 10.1038/291193a0
Dorais, 1997, Origin of biotite-apatite-rich enclaves, Achala batholith, Argentina, Contrib. Mineral. Petrol., 130, 31, 10.1007/s004100050347
Eby, 1990, The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis, Lithos, 26, 115, 10.1016/0024-4937(90)90043-Z
Eby, 1992, Chemical subdivision of the A-type granitoids:Petrogenetic and tectonic implications, Geology, 20, 641, 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Frost, 2001, A geochemical classification for granitic rocks, J. Petrol., 42, 2033, 10.1093/petrology/42.11.2033
Gan, 2010, Geochronology and geochemical characteristics of the Yemaquan granitic pluton in East Junggar, Xinjiang, Acta Petrol. Sin., 26, 2374
Han, 1997, Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd–Sr isotopic evidence, and implications for Phanerozoic crustal growth, Chem. Geol., 138, 135, 10.1016/S0009-2541(97)00003-X
Han, 2019, Plume-modified collision orogeny: the Tarim–western Tianshan example in Central Asia, Geology, 47, 1001, 10.1130/G46855.1
Hergt, 2007, A-type magmatism in the Western Lachlan Fold Belt? A study of granites and rhyolites from the Grampians region, Western Victoria, Lithos, 97, 122, 10.1016/j.lithos.2006.12.008
Huang, 2012, Continental vertical growth in the transitional zone between South Tianshan and Tarim, western Xinjiang, NW China: Insight from the Permian Halajun A1-type granitic magmatism, Lithos, 155, 49, 10.1016/j.lithos.2012.08.014
Huang, 2018, Sedimentary provenance in response to Carboniferous arc-basin evolution of East Junggar and North Tianshan belts in the southwestern Central Asian Orogenic Belt, Tectonophysics, 722, 324, 10.1016/j.tecto.2017.11.015
Iizuka, 2005, Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique, Chem. Geol., 220, 121, 10.1016/j.chemgeo.2005.03.010
Jahn, 2000, Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic, Trans. R. Soc. Edinb. Earth Sci., 91, 181
King, 1997, Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia, J. Petrol., 38, 371, 10.1093/petroj/38.3.371
Knudsen, 2001, In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: a record of repeated crustal reworking, Contrib. Mineral. Petrol., 141, 83, 10.1007/s004100000220
Li, 2006, Geochemistry of the 755 Ma Mundine well dyke swarm, northwestern Australia: part of a Neoproterozoic mantle superplume beneath Rodinia?, Precambrian Res., 146, 1, 10.1016/j.precamres.2005.12.007
Li, 2020, The role of arc-arc collision in accretionary orogenesis: Insights from ∼320 Ma tectono-sedimentary transition in the Karamaili Area, NW China, Tectonics, 39, 10.1029/2019TC005623
Liu, 2013, Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U–Pb ages, petrography, geochemistry and Nd–Sr–Hf isotopes, Lithos, 179, 293, 10.1016/j.lithos.2013.08.009
Liu, 2019, Petrogenesis and source rocks of the high-K calc-alkaline and shoshonitic I-type granitoids in the northwestern part of East Junggar, NW China, Lithos, 326-327, 298, 10.1016/j.lithos.2018.12.033
Long, 2012, Geochemistry and U–Pb detrital zircon dating of Paleozoic graywackes in East Junggar, NW China: Insights into subduction–accretion processes in the southern Central Asian Orogenic Belt, Gondwana Res., 21, 637, 10.1016/j.gr.2011.05.015
Lowell, 1999, Interaction between coeval mafic and felsic melts in the St. Francois Terrane of Missouri, USA, Precambrian Res., 95, 69, 10.1016/S0301-9268(98)00127-2
Ludwig, 2003
Martin, 1999, Adakitic magmas: modern analogues of Archaean granitoids, Lithos, 46, 411, 10.1016/S0024-4937(98)00076-0
Middlemost, 1994, Naming materials in the magma/igneous rock system, Earth Sci. Rev., 37, 215, 10.1016/0012-8252(94)90029-9
Miller, 2003, Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance, Geology, 31, 529, 10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2
Patiño Douce, 1997, Generation of metaluminous A-Type granites by low pressure melting of calc-alkaline granitoids, Geology, 25, 743, 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
Pearce, 1996, Sources and settings of granitic rocks, Episodes, 19, 120, 10.18814/epiiugs/1996/v19i4/005
Pearce, 1984, Characteristics and tectonic significance of super-suduction zone ophilites, Geol. Soc. Lond., Spec. Publ., 16, 77, 10.1144/GSL.SP.1984.016.01.06
Pietranik, 2009, Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland, Contrib. Mineral. Petrol., 158, 17, 10.1007/s00410-008-0368-z
Roberts, 1993, Origin of high-potassium, calc-alkaline, I-type granitoids, Geology, 21, 825, 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2
Rollinson, 1993
Rudnick, 2003, 3.01 - composition of the continental crust, 1
Sengör, 1993, Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia, Nature, 364, 299, 10.1038/364299a0
Shellnutt, 2007, Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume, Chem. Geol., 243, 286, 10.1016/j.chemgeo.2007.05.022
Shellnutt, 2010, Elemental and Sr–Nd isotope geochemistry of microgranular enclaves from peralkaline A-type granitic plutons of the Emeishan large igneous province, SW China, Lithos, 119, 34, 10.1016/j.lithos.2010.07.011
Shen, 2011, Late Devonian–early Permian A-type granites in the southern Altay Range, Northwest China: Petrogenesis and implications for tectonic setting of “A2-type” granites, J. Asian Earth Sci., 42, 986, 10.1016/j.jseaes.2010.10.004
Shu, 2003, Polyphase Tectonic events and Cenozoic basin-range coupling in the Tianshan belt, northwestern China, Acta Geol. Sin. Engl. Ed., 77, 457
Song, 2019, Contrasting deep crustal compositions between the Altai and East Junggar orogens, SW Central Asian Orogenic Belt: evidence from zircon Hf isotopic mapping, Lithos, 328-329, 297, 10.1016/j.lithos.2018.12.039
Stern, 1996, Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contrib. Mineral. Petrol., 123, 263, 10.1007/s004100050155
Su, 2012, Geochemistry and geochronology of Carboniferous volcanic rocks in the eastern Junggar terrane, NW China: Implication for a tectonic transition, Gondwana Res., 22, 1009, 10.1016/j.gr.2012.01.004
Sun, 1989, Chemical and isotopic systematics of oceanic basalts : Implications for mantle composition and source processes, Geol. Soc. Lond. Spec. Publ., 42, 313, 10.1144/GSL.SP.1989.042.01.19
Tang, 2007, Zircon U-Pb age of the plagiogranite in Kalamaili belt, northern Xinjiang and its tectonic implications, Geotecton. Metallog., 31, 110
Tang, 2019, Crustal maturation through chemical weathering and crustal recycling revealed by Hf–O–B isotopes, Earth Planet. Sci. Lett., 524, 115709, 10.1016/j.epsl.2019.115709
Tian, 2010, The Tarim picrite–basalt–rhyolite suite, a Permian flood basalt from Northwest China with contrasting rhyolites produced by fractional crystallization and anatexis, Contrib. Mineral. Petrol., 160, 407, 10.1007/s00410-009-0485-3
Tong, 2015, Permian alkaline granites in the Erenhot–Hegenshan belt, northern Inner Mongolia, China: Model of generation, time of emplacement and regional tectonic significance, J. Asian Earth Sci., 97, 320, 10.1016/j.jseaes.2014.10.011
Wang, 2007
Wang, 2016, Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow, Nat. Commun., 7, 11888, 10.1038/ncomms11888
Watson, 1983, Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types, Earth Planet. Sci. Lett., 64, 295, 10.1016/0012-821X(83)90211-X
Weis, 2006, High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS, Geochem. Geophys. Geosyst., 7, 30, 10.1029/2006GC001283
Whalen, 1987, A-type granites: geochemical characteristics, discrimination and petrogenesis, Contrib. Mineral. Petrol., 95, 407, 10.1007/BF00402202
White, 1999, Application of the restite model to the Deddick granodiorite and its enclaves --a reinterpretation of the observations and data of maas et al. (1997), J. Petrol., 40, 413, 10.1093/petroj/40.3.413
Windley, 2007, Tectonic models for accretion of the Central Asian Orogenic Belt, J. Geol. Soc., 164, 31, 10.1144/0016-76492006-022
Wu, 2012, Geochronology of the Hongliuxia ductile shear zone and its constraint on the closure time of the Junggar Ocean, Acta Petrol. Sin., 28, 2331
Wu, 2017, Highly fractionated granites: Recognition and research, Sci. China Earth Sci., 60, 1, 10.1007/s11430-016-5139-1
Xiao, 2004, Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China) : implications for the continental growth of central Asia, Am. J. Sci., 304, 370, 10.2475/ajs.304.4.370
Xiao, 2008, Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: Implications for the tectonic evolution of Central Asia, J. Asian Earth Sci., 32, 102, 10.1016/j.jseaes.2007.10.008
Xiao, 2011, Late Paleozoic magmatic record of East Junggar, NW China and its significance: Implication from zircon U–Pb dating and Hf isotope, Gondwana Res., 20, 532, 10.1016/j.gr.2010.12.008
Xu, 2014, The early Permian Tarim large Igneous Province: Main characteristics and a plume incubation model, Lithos, 204, 20, 10.1016/j.lithos.2014.02.015
Xu, 2015, Spatial–temporal framework for the closure of the Junggar Ocean in Central Asia: New SIMS zircon U–Pb ages of the ophiolitic mélange and collisional igneous rocks in the Zhifang area, East Junggar, J. Asian Earth Sci., 111, 470, 10.1016/j.jseaes.2015.06.017
Yang, 2007, Permian bimodal dyke of Tarim Basin, NW China: Geochemical characteristics and tectonic implications, Gondwana Res., 12, 113, 10.1016/j.gr.2006.10.018
Yang, 2011, Geochronological and geochemical constrains on petrogenesis of the Huangyangshan A-type granite from the East Junggar, Xinjiang, NW China, J. Asian Earth Sci., 40, 722, 10.1016/j.jseaes.2010.11.008
Yuan, 2004, Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry, Geostand. Geoanal. Res., 28, 353, 10.1111/j.1751-908X.2004.tb00755.x
Yuan, 2008, Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS, Chem. Geol., 247, 100, 10.1016/j.chemgeo.2007.10.003
Yuan, 2010, Post-collisional plutons in the Balikun area, East Chinese Tianshan: Evolving magmatism in response to extension and slab break-off, Lithos, 119, 269, 10.1016/j.lithos.2010.07.004
Zhang, 2010, Diverse Permian magmatism in the Tarim Block, NW China: Genetically linked to the Permian Tarim mantle plume?, Lithos, 119, 537, 10.1016/j.lithos.2010.08.007
Zhang, 2013, Early Carboniferous collision of the Kalamaili orogenic belt, North Xinjiang, and its implications: evidence from molasse deposits, Geol. Soc. Am. Bull., 125, 932, 10.1130/B30779.1
Zhang, 2015, Geochemistry and petrogenesis of early Carboniferous volcanic rocks in East Junggar, North Xinjiang: Implications for post-collisional magmatism and geodynamic process, Gondwana Res., 28, 1466, 10.1016/j.gr.2014.08.018