Sự tuyệt chủng hàng loạt ở cuối kỷ Ordovic: do sự nóng lên hay làm mát toàn cầu?

Springer Science and Business Media LLC - Tập 39 - Trang 595-598 - 2020
Renqiang Liao1,2, Weidong Sun1,2,3
1Institute of Oceanology, Center for Ocean Mega-Science, Center of Deep Sea Research, Chinese Academy of Sciences, Qingdao, China
2University of Chinese Academy of Sciences, Beijing, China
3Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology, Qingdao, China

Tóm tắt

Sự tuyệt chủng hàng loạt ở cuối kỷ Ordovic (LOME) là sự kiện tuyệt chủng toàn cầu đầu tiên với sự tiêu diệt 85% các loài sinh vật biển. Tuy nhiên, nguyên nhân của LOME vẫn còn gây tranh cãi. Hầu hết các nghiên cứu cho rằng nó là do sự hoạt động đáng kể của núi lửa do sự làm lạnh hoặc ấm lên toàn cầu. Thông qua việc phân tích sự khác biệt động lực giữa làm lạnh và ấm lên toàn cầu lên magmatism quy mô lớn, góc nhìn này nhằm gợi lên một cuộc thảo luận sôi nổi về nguyên nhân của LOME. Liệu sự làm lạnh hay ấm lên toàn cầu đã kích hoạt LOME?

Từ khóa

#sự tuyệt chủng hàng loạt #cuối kỷ Ordovic #sự nóng lên toàn cầu #sự làm mát toàn cầu #núi lửa #động lực học #magmatism

Tài liệu tham khảo

Algeo TJ, Marenco PJ, Saltzman MR (2016) Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: a review. Palaeogeogr Palaeoclimatol Palaeoecol 458:1–11 Bond DPG, Grasby SE (2020) Late Ordovician mass extinction caused by volcanism, warming, and anoxia, not cooling and glaciation. Geology. https://doi.org/10.1130/G47377.1 Boulahanis B, Carbotte SM, Huybers PJ, Nedimović MR, Aghaei O, Canales JP, Langmuir CH (2020) Do sea level variations influence mid-ocean ridge magma supply? A test using crustal thickness and bathymetry data from the East Pacific Rise. Earth Planet Sci Lett 535:116121 Canil D, Crockford PW, Rossin R, Telmer K (2015) Mercury in some arc crustal rocks and mantle peridotites and relevance to the moderately volatile element budget of the Earth. Chem Geol 396:134–142 Courtillot V, Olson P (2007) Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth Planet Sci Lett 260(3–4):495–504 Crowley JW, Katz RF, Huybers PJ, Langmuir CH, Park S (2015) Glacial cycles drive variations in the production of oceanic crust. Science 347(6227):1237–1240 Gill GA, Fitzgerald WF (1988) Vertical mercury distributions in the oceans. Geochim Cosmochim Acta 52(6):1719–1728 Grasby SE, Them TR, Chen Z, Yin R, Ardakani OH (2019) Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci Rev 196:102880 Hammarlund EU, Dahl TW, Harper DAT, Bond DPG, Nielsen AT, Bjerrum CJ, Schovsbo NH, Schönlaub HP, Zalasiewicz JA, Canfield DE (2012) A sulfidic driver for the end-Ordovician mass extinction. Earth Planet Sci Lett 331–332:128–139 Harper DAT, Hammarlund EU, Rasmussen CMØ (2014) End Ordovician extinctions: a coincidence of causes. Gondwana Res 25(4):1294–1307 Hu D et al (2020) Large mass-independent sulphur isotope anomalies link stratospheric volcanism to the Late Ordovician mass extinction. Nat Commun 11(1):2297 Huybers PJ, Langmuir CH (2009) Feedback between deglaciation, volcanism, and atmospheric CO2. Earth Planet Sci Lett 286(3):479–491 Jones DS, Martini AM, Fike DA, Kaiho K (2017) A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 45(7):631–634 Lefebvre V, Servais T, François L, Averbuch O (2010) Did a Katian large igneous province trigger the Late Ordovician glaciation?: a hypothesis tested with a carbon cycle model. Palaeogeogr Palaeoclimatol Palaeoecol 296(3):310–319 Ling M, Zhan R, Wang G, Wang Y, Amelin Y, Tang P, Liu J, Jin J, Huang B, Wu R (2019) An extremely brief end Ordovician mass extinction linked to abrupt onset of glaciation. Solid Earth Sci 4(4):190–198 Pyle DM, Mather TA (2003) The importance of volcanic emissions for the global atmospheric mercury cycle. Atmos Environ 37(36):5115–5124 Rudnick R, Gao S (2014) Composition of the continental crust. In: Treatise on geochemistry, 2nd edn, pp 1–45 Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Resour 34(1):43–63 Sheehan PM (2001) The late Ordovician mass extinction. Annu Rev Earth Planet Sci 29(29):331–364 Shen J, Algeo TJ, Chen J, Planavsky NJ, Feng Q, Yu J, Liu J (2019) Mercury in marine Ordovician/Silurian boundary sections of South China is sulfide-hosted and non-volcanic in origin. Earth Planet Sci Lett 511:130–140 Sun WD (2019) The Magma Engine and the driving force of plate tectonics. Chin Sci Bull 64:2988–3006 (in Chinese with English abstract) Sun WD, Liao RQ (2020) The end Ordovician mass extinction induced by rapid glaciation. Chin Sci Bull 65(6):431–433 (in Chinese with English abstract) Trotter JA, Williams IS, Barnes CR, Lecuyer C, Nicoll RS (2008) Did cooling oceans trigger ordovician biodiversification? Evidence from conodont thermometry. Science 321(5888):550–554 Young SA, Saltzman MR, Foland KA, Linder JS, Kump LR (2009) A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): links to volcanism and climate? Geology 37(10):951–954