Late Alpine brittle faulting in the Rotondo granite (Switzerland): deformation mechanisms and fault evolution
Tóm tắt
The unlined Bedretto tunnel in the Central Swiss Alps has been used to investigate in detail the fault architecture and late Alpine brittle faulting processes in the Rotondo granite on macroscopic and microscopic scales. Brittle faults in the late Variscan Rotondo granite preferentially are situated within the extent of preexisting ductile shear zones. Only in relatively few cases the damage zone extends into or develops in the previously undeformed granite. Slickensides suggest a predominant (dextral) strike-slip movement along these steeply dipping and NE–SW-striking faults. Microstructures of these fault rocks illustrate a multi-stage retrograde deformation history from ductile to brittle conditions up to the cessation of fault activity. In addition these fabrics allow identifying cataclastic flow, fluid-assisted brecciation and chemical corrosive wear as important deformation mechanisms during this retrogressive deformation path. Based on the analysis of zeolite microfabrics (laumontite and stilbite; hydrated Ca–Al- and Na–Ca–Al–silicate, respectively) in fault breccias, cataclasites and open fractures we conclude, that the main phase of active brittle faulting started below 280°C and ceased ca. 14 Ma ago at temperatures slightly above 200°C. This corresponds to a depth of approx. 7 km.
Tài liệu tham khảo
Anderson, I. J., Osborne, R. H., & Palmer, D. F. (1983). Cataclastic rocks of the San Gabriel fault—An expression of deformation at deeper crustal levels in the San Andreas fault zones. Tectonophysics, 98, 209–251.
Arnold, A. (1970). Die Gesteine der Region Nalps-Curnera im nordöstlichen Gotthardmassiv, ihre Metamorphose und ihre Kalksilikalfels-Einschlüsse. Beiträge zur Geologischen Karte der Schweiz, N.F. 138.
Baer, M., Deichmann, N., Braunmiller, J., Husen, S., Fäh, D., Giardini, D., et al. (2005). Earthquakes in Switzerland and surrounding regions during 2004. Eclogae Geologicae Helvetiae, 98(3), 407–418.
Barton, C. A., Zoback, M. D., & Moos, D. (1995). Fluid flow along potentially active faults in crystalline rock. Geology, 23(8), 683–686.
Bernotat, W., & Bambauer, H. U. (1980). Die Mikroklin/Sanidin-Isograde in Aar- und Gotthardmassiv. Eclogae Geologicae Helvetiae, 73(2), 559–561.
Blenkinsop, T. (2000). Deformation microstructures and mechanisms in minerals and rocks. New York: Kluwer Academic.
Blenkinsop, T. G., & Sibson, R. H. (1992). Aseismic fracturing and cataclasis involving reaction softening within core material from the Cajon Pass drill hole. Journal of Geophysical Research, 97(B4), 5135–5144.
Boullier, A. M., Fujimoto, K., Ito, H., Ohtani, T., Keulen, N., Fabbri, O., et al. (2004a). Structural evolution of the Nojima fault (Awaji Island, Japan) revisited from the GSJ drill hole at Hirabayashi. Earth, Planets, and Space, 56(12), 1233–1240.
Boullier, A. M., Fujimoto, K., Ohtani, T., Roman-Ross, G., Lewin, É., Ito, H., et al. (2004b). Textural evidence for recent co-seismic circulation of fluids in the Nojima fault zone, Awaji island, Japan. Tectonophysics, 378(3–4), 165–181.
Brace, W. F. (1980). Permeabilty of crystalline and argillaceous rocks. International Journal of Rock Mechanics and Mining Sciences, 17, 241–251.
Bruhn, R. L. (1994). Fracturing in normal fault zones: Implications for fluid transport and fault stability. USGS open file report proceedings: The mechanical involvement of fluids in faults/94-228, 231–246.
Bruhn, R. L., Yonkee, W. E., & Parry, W. T. (1994). Fracturing and hydrothermal alteration in normal fault zones. PAGEOPH, 142, 609–644.
Buergi, C., Parriaux, A., Franciosi, G., & Rey, J.-P. (1999). Cataclastic rocks in underground structures—Terminology and impact on the feasibility of projects (initial results). Engineering Geology, 51(3), 225–235.
Byerlee, J. (1993). Model for episodic flow of high-pressure water in fault zones before earthquakes. Geology, 21, 303–306.
Caine, J. S., Evans, J. P., & Forster, C. B. (1996). Fault zone architecture and permeability structure. Geology, 24(11), 1025–1028.
Caine, J. S., & Forster, C. (1999). Fault zone architecture and fluid flow: insights from field data and numerical modeling. Faults and subsurface fluid flow in the shallow crust, American Geophysical Union., 113, 101–127.
Campbell, A. S., & Fyfe, W. S. (1965). Analcime-albite equilibria. American Journal of Science, 263, 807–816.
Chester, F. M., Evans, J. P., & Biegel, R. L. (1993). Internal structure and weakening mechanisms of the San Andreas fault. Journal of Geophysical Research, 98, 771–786.
Chester, F. M., Friedman, M., & Logan, J. M. (1985). Foliated Cataclasites. Tectonophysics, 111, 139–146.
Chipera, S. J., & Apps, J. A. (2001). Geochemical Stability of natural zeolites. Reviews in mineralogy and geochemistry, 45.
Cho, M., Maruyama, S., & Liou, J. G. (1987). An experimental investigation of heulandite-laumontite equilibrium at 1000 to 2000 bar P fluid. Contributions to Mineralogy and Petrology, 97(1), 43–50.
Coombs, D. S., Ellis, A. J., Fyfe, W. S., & Tayler, A. M. (1959). The zeolite facies, with comments on the interpretation of hydrothermal synthesis. Geochimica et Cosmochimica Acta, 17, 53–107.
Deichmann, N., & Baer, M. (2007) Earthquakes in Switzerland and surrounding regions 1996–2006. Report of the Swiss Seismological Service, ETH Zürich.
Eckardt, P. M. (1957). Zur Talgeschichte der Tavetsch und seine Bruchsysteme und jungquartären Verwerfungen. Geologisches Institut Zürich, Dissertation, 120.
Eckardt, P. M., Funk, H., & Labhardt, T. (1983). Postglaziale Krustenbewegungen an der Rhein-Rhone-Linie. Vermessung, Photogrammetrie, Kulturtechnik, 83(2), 42–56.
Evans, J. P., Forster, C. B., & Goddard, J. V. (1997). Permeabilty of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structural Geology, 19(11), 1393–1404.
Fischer, W. (1990). Verschiebungsmessungen im Gebiet Stöckli-Lutersee. Berichte des Instituts für Geodäsie und Photogrammetrie.
Frei, B., & Loew, S. (2001). Störzonen im südlichen Aar-Massiv. Eclogae Geologicae Helvetiae, 94(1), 13–28.
Frey, M., Bucher, K., Frank, E., & Mullis, J. (1980). Alpine metamorphism along the geotraverse Basel-Chiasso—A review. Eclogae Geologicae Helvetiae, 73, 527–546.
Frey, M., & Mählmann, R. F. (1999). Alpine metamorphism of the Central Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 79, 135–154.
Gapais, D. (1989). Shear structures within deformed granites: Mechanical and thermal indications. Geology, 17, 1144–1147.
Glotzbach, C., Reinecker, J., Danišík, M., Rahn, M., Frisch, W., & Spiegel, C. (2010). Thermal history of the central Gotthard and Aar massifs, European Alps: Evidence for steady state, long-term exhumation. Journal of Geophysical Research, 115(F3), F03017.
Guerrot, C., & Steiger, R. H. (1991). Variscan granitoids in the Gotthard-massif, Switzerland: Pb-U single zircon and Sr-Nd data. Terra Abstracts, 3, 35.
Guilbert, J. M., & Park, C. F., Jr. (1986). The geology of ore deposits. New York: WH Freeman and Co.
Hafner, S. (1958). Petrographie des südwestlichen Gotthardmassives (zwischen St. Gotthardpass und Nufenenpass). Schweizerische Mineralogische und Petrographische Mitteilungen, 38, 255–362.
Hafner, S., Günthert, A., Burckhardt, C. E., Steiger, R. H., Hansen, J. W. & Niggli, C. R. (1975). Geologischer Atlas der Schweiz 1:25’000, Val Bedretto.
Hardebeck, J. L., & Hauksson, E. (1999). Role of fluids in faulting inferred from stress field signatures. Science, 285(5425), 236.
Heer, W. & Jakob, A. (1999). Structural geology and transport modelling for grimsel and aspo. Water-conducting features in radionuclide migration: workshop proceedings, Barcelona, Spain, 10–12 June 1998.
Henley, R. W., & Ellis, A. J. (1983). Geothermal systems, ancient and modern: a geochemical review. Earth Science Reviews, 19, 1–50.
Hoagland, J. R., & Elders, W. A. (1978). Hydrothermal mineralogy and isotopic geochemistry of Cerro Prieto geothermal field Mexico. I. Hydrothermal mineral zonation. Geothermal Resources Council Transactions, 2, 282–286.
Hobbs, B. E. (1995). Principles involved in mobilization and remobilization. Ore Geology Reviews, 2, 37–45.
Jäckli, H. (1951). Verwerfungen jungquartären Alters im südlichen Aarmassiv bei Somvix-Rabius (Graubünden). Eclogae Geologicae Helvetiae, 44(2), 332–337.
Jäckli, H. (1957). Gegenwartsgeologie des bündnerischen Rheingebietes. Beiträger zur Geologischen Karte der Schweiz, geotech. Ser., 36, 1–136.
James, E. W., & Silver, L. T. (1988). Implications of zeolites and their zonation in the Cajon Pass Deep Drillhole. Geophysical Research Letters, 15(9), 973–976.
Jamier, D. (1975). Etude de la fissuration, de l’hydrogéologie et de la géochimie des eaux profondes des massifs de l’Arpille et du Mont-Blanc. PhD, 153.
Jébrak, M. (1992). Les textures intra-filoniennes, marqeurs des conditions hydrauliques et tectoniques. Chronique de la Recherche Minière, 506, 55–65.
Jébrak, M. (1997). Hydrothermal breccias in vein-type ore deposits: A review of mechanisms, morphology and size distribution. Ore Geology Reviews, 12, 111–137.
Kamber, B. S. (1993). Regional metamorphism and uplift along the southern margin of the Gotthard massif; results from the Nufenenpass area. Schweizerische Mineralogische und Petrographische Mitteilungen, 73(2), 241–257.
Kanaori, Y., Kawakami, S.-I., & Yairi, K. (1991). Microstructure of deformed biotite defining foliation in cataclasite zones in granite, central Japan. Journal of Structural Geology, 13(7), 777–785.
Kastrup, U., Zoback, M. L., Deichmann, N., Evans, K., Giardini, D. & Michael, A. J. (2004). Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversion of fault plane solutions. Journal of Geophysical Research 109.
Kipfer, A., & Stuker, P. (1979). Mineralien aus dem Rotondogranit. Schweizer Strahler, 5, 45–91.
Klaper, E. M., & Bucher-Nurminen, K. (1987). Alpine metamorphism of pelitic schists in the Nufenen Pass area, Lepontine Alps. Journal of Metamorphic Geology, 5(2), 175–195.
Kralik, M., Clauer, N., Holnsteiner, R., Huemer, H., & Kappel, F. (1992). Recurrent fault activity in the Grimsel test site (GTS, Switzerland): revealed by Rb-Sr, K-Ar and tritium isotope techniques. Journal of the Geological Society, London, 149, 293–301.
Krasny, J., & Sharp, J. (Eds.). (2007). Groundwater in fractured rocks (IAH-Selected papers in hydrogeology). London: Taylor & Francis.
Kretz, R. (1983). Symbols for rock-forming minerals. American Mineralogist, 68(1–2), 277–279.
Labhart, T. P. (1977). Aarmassiv und Gotthardmassiv. Schweizerbarth: Stuttgart.
Labhart, T. P. (2005). Erläuterungen zum Geologischen Atlas der Schweiz 1:25000, Val Bedretto, Atlasblatt 68, Bundesamt fuer Umwelt.
Lambert, P., Marquer, D., & Persoz, F. (1992). Structures sur la bordure sud du socle du Gothard; histoire cinématique tertiaire du Val Rondadura (Alpes centrales suisses). Schweizerische Mineralogische und Petrographische Mitteilungen, 72(3), 325–334.
Laws, S. (2001). Structural, geomechanical and petrophysical properties of shear zones in the eastern Aar-massif, Switzerland. Geologisches Institut Zürich, PhD, 168.
Laws, S., Eberhardt, E., Loew, S., & Descoeudres, F. (2003). Geomechanical properties of shear zones in the Eastern Aar Massif, Switzerland and their implication on tunnelling. Rock Mechanics and Rock Engineering, 36(4), 271–303.
Leu, W. (1985). Geologie der Sedimentzüge zwischen Griessee und Passa del Corno (Nufenengebiet, Wallis) = Géologie des successions de sédiments entre Griessee et Passo del Corno (Région Nufenen, Wallis). Eclogae Geologicae Helvetiae, 78(3), 537–544.
Liou, J. G. (1971a). Analcime equilibria. Lithos, 4, 389–402.
Liou, J. G. (1971b). P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2O8-SiO2–H2O. Journal of Petrology, 12, 379–411.
Liou, J. G. (1971c). Stilbite-laumontite equilibrium. Contributions to Mineralogy and Petrology, 31, 171–177.
Liou, J. G. (1971d). Synthesis and stability relations for prehnite, Ca2Al2FeSi3O10(OH)2. American Mineralogist, 56, 507–531.
Liou, J. G. (1973). Synthesis and stability relations of epidote/Ca2Al2FeSiO12(OH). Journal of Petrology, 14, 381–413.
Liszkay, M. (1965). Geologie der Sedimentbedeckung des südwestlichen Gotthard-Massivs im Oberwallis. Eclogae Geologicae Helvetiae, 58(2), 901–965.
Loew, S., Barla, G. & Diederichs, M. (2010). Engineering geology of Alpine tunnels: Past, present and future. In: A. L. Williams, G. M. Pinches, C. Y. Chin, T. J. MbMorran & C. I. Massey (Eds.), Geologically active—Proceedings of the 11th IAEG Congress (pp. 201–253). Auckland: CRC Press.
Loew, S., Lützenkirchen, V., Ofterdinger, U., Zangerl, C., Eberhardt, E. & Evans, K. (2007). Environmental impacts of tunnels in fractured crystalline rocks of the Central Alps. Groundwater in Fractured Rocks, IAH. 9.
Lützenkirchen, V. (2002). Structural geology and hydrogeology of Brittle Fault Zones in the Central and Eastern Gotthard Massif, Switzerland. Geologisches Institut Zürich, PhD, 246.
Maréchal, J.-C. (1998). Les circulations d’eau dans les massifs cristallins alpins et leurs relations avec les ouvrages souterrains. Département de génie civil (GEOLEP), Laboratoire de géologie Lausanne, Ph.D., 296.
Marquer, P. D. (1990). Structures et déformation alpine dans les granites hercyniens du massif du Gotthard (Alpes centrales suisses). Eclogae Geologicae Helvetiae, 83(1), 77–97.
Matsuda, T., Omura, K., Ikeda, R., Arai, T., Kobayashi, K., Shimada, K., et al. (2004). Fracture-zone conditions on a recently active fault: Insights from mineralogical and geochemical analyses of the Hirabayashi NIED drill core on the Nojima fault, southwest Japan, which ruptured in the 1995 Kobe earthquake. Tectonophysics, 378(3–4), 143–163.
Mercolli, I., Biino, G. G., & Abrecht, J. (1994). The lithostratigraphy of the pre-mesozoic basement of the Gotthard massif: a review. Schweizerische Mineralogische und Petrographische Mitteilungen, 74, 29–40.
Merz, C. (1989). L’intrusif Medel-Cristallina (massif du Gothard oriental) Partie I: déformations alpines et relations socle-couverture. Schweizerische Mineralogische und Petrographische Mitteilungen, 69, 55–71.
Miller, S. A., Nur, A., & Olgaard, D. L. (1996). Earthquakes as a coupled shear stress-high pore pressure dynamical system. Geophysical Research Letters, 23(2), 197–200.
Milnes, A. G. (1974). Structure of the Pennine zone (Central Alps): a new working hypothesis. Geological Society of America Bulletin, 85, 1727–1732.
Moore, A. C. (1970). Descriptive terminology for the textures of rock in granulite facies terrain. Lithos, 3, 123–127.
Niggli, E. (1970). Alpine Metamorphose und alpine Gebirgsbildung. Fortschritte der Mineralogie, 47(1), 16–26.
Nunes, P. D., & Steiger, R. H. (1974). A U-Pb Zircon, and Rb-Sr and U-Th-Pb whole rock study of a polymetamorphic terrane in the Central Alps. Contributions to Mineralogy and Petrology, 47, 255–280.
Oberhaensli, R. (1985). Geochemistry of meta-lamprophyres from the Central Swiss Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 66, 315–342.
Oberhänsli, R., Schenker, F., & Mercolli, I. (1988). Indications of Variscan nappe tectonics in the Aar Massif. Schweizerische Mineralogische und Petrographische Mitteilungen, 68(3), 509–520.
Ohtani, T., Fujimoto, K., Ito, H., Tanaka, H., Tomida, N., & Higuchi, T. (2000). Fault rocks and past to recent fluid characteristics from the borehole survey of the Nojima fault ruptured in the 1995 Kobe earthquake, southwest Japan. Journal of Geophysical Research, 105(B7), 16161–16172.
Parry, W. T., & Bruhn, M. S. (1990). Fluid pressure transient on seismogenic normal fault. Tectonophysics, 179, 335–344.
Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics. Berlin: Springer.
Pennacchioni, G., Di Toro, G., Brack, P., Menegon, L., & Villa, I. M. (2006). Brittle–ductile–brittle deformation during cooling of tonalite (Adamello, Southern Italian Alps). Tectonophysics, 427(1–4), 171–197.
Persaud, M., & Pfiffner, O. A. (2004). Active deformation in the eastern Swiss Alps: post-glacial faults, seismicity and surface uplift. Tectonophysics, 385(1–4), 59–84.
Pettke, T., & Klaper, E. M. (1992). Zur Petrographie und Deformationsgeschichte des südöstlichen Gotthardmassivs. Schweizerische Mineralogische und Petrographische Mitteilungen, 72, 197–211.
Pfiffner, O. A. (2009). Geologie der Alpen. Haupt Verlag: Bern Stuttgart Wien.
Priest, S. D. (1993). Discontinuity analysis for rock engineering. London: Chapman & Hall.
Robert, F., & Boullier, A. M. (1994). Mesothermal gold-quartz veins and earthquakes. The mechanical involvement of fluids in faulting, pp. 94–228.
Schaltegger, U., & Corfu, F. (1992). The age and source of late Hercynian magmatism in the Central Alps: evidence from precise U-Pb ages and initial Hf isotopes. Contributions to Mineralogy and Petrology, 111, 329–344.
Schmid, S. M., Fügenschuh, B., Kissling, E., & Schuster, R. (2004). Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97(1), 93–117.
Schmid, S. M., Pfiffner, O. A., Froitzheim, N., Schönborn, G., & Kissling, E. (1996). Geophysical-geological transect and tectonic evolution of the Swiss-Italian Alps. Tectonics, 15(5), 1036–1064.
Schneider, T. R. (1979). Gotthard Strassentunnel—Geologischer Schlussbericht Nordseite. II.: Geologie., (unpublished report).
Schneider, T. R. (1985) Basistunnel Furka—Geologische Aufnahme des Fensters Bedretto. Brig, Furka-Oberalp-Bahn AG.
Scholz, C. H. (1990). The mechanics of earthquake and faulting. Cambridge: Cambridge University Press.
Seki, Y., Oki, Y., Matsuda, T., Mikami, K., & Okumura, K. (1969). Metamorphism in the Katayama geothermal area, Onikobe, Japan. Journal of the Geological Society of Japan, 40, 63–79.
Sergeev, S. A., & Steiger, R. H. (1995). Caledonian and Variscan granitoids of the Gotthard massif: new geochronological and geochemical results. Schweizerische Mineralogische und Petrographische Mitteilungen, 75, 315–316.
Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of Geological Society, 133, 191–213.
Sibson, R. H. (1986). Brecciation processes in fault zones: Inferences from earthquake rupturing. Pure and Applied Geophysics, 124, 159–174.
Sibson, R. H. (1992). Implications of fault-valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1–4), 283–293.
Sibson, R. H. (2000). Fluid involvement in normal faulting. Journal of Geodynamics, 29, 469–499.
Snoke, A. W., Tullis, J., & Todd, V. R. (1998) Fault-related rocks: A Photographic Atlas. Princeton: Princeton University Press.
Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time paths. Washington, DC: Mineralogical Society of America.
Stachowiak, G. W., & Batchelor, A. W. (1993). Engineering Tribology.
Steck, A. (1968). Junge Bruchsysteme in den Zentralalpen. Eclogae Geologicae Helvetiae, 61(2), 387–393.
Stünitz, H., & Fitz Gerald, J. D. (1993). Deformation of granitoids at low metamorphic grade. II. Granular flow in albite-rich mylonites. Tectonophysics, 221, 229–324.
Tanaka, H., Omura, K., Matsuda, T., Ikeda, R., Kobayashi, K., Murakami, M., & Shimada, K. (2007). Architectural evolution of the Nojima fault and identification of the activated slip layer by Kobe earthquake. Journal of Geophysical Research, 112/B7.
Thompson, A. B. (1970). Laumontite equilibria and the zeolite facies. American Journal of Science, 269, 267–275.
Thompson, A. B. (1971). Analcite-albite equilibria at low temperatures. American Journal of Science, 271(1), 79.
Tröger, W. E., Bambauer, H. U., Taborszky, F., & Trochim, H. D. (1982). Optische Bestimmung der gesteinsbildenden Minerale. Stuttgart: Schweizerbart.
Tullis, J., & Yund, R. A. (1987). Transition from cataclastic flow to dislocation creep of feldspar: mechanisms and microstructures. Geology, 15, 606–609.
Ustaszewski, M., Herwegh, M., McClymont, A. F., Pfiffner, O. A., Pickering, R., & Preusser, F. (2007). Unravelling the evolution of an Alpine to post-glacially active fault in the Swiss Alps. Journal of Structural Geology, 29(12), 1943–1959.
Ustaszewski, M., & Pfiffner, O. A. (2008). Neotectonic faulting, uplift and seismicity in the central and western Swiss Alps. Tectonic Aspects of the Alpine-Dinaride-Carpathian System: Carpathian System, 231.
Utada, M. (1965). Zonal distribution of authigenic zeolites in the Tertiary pyroclastic rocks in Mogami district, Yamagata Prefecture. Tokyo University College General Education Science Paper, 15, 173–216.
Vincent, M. W., & Ehlig, P. L. (1988). Laumontite mineralization in rocks exposed north of San Andreas fault at Cajon Pass, southern California. Geophysical Research Letters, 15(9), 977–980.
Walder, J., & Nur, A. (1984). Porosity reduction and crustal pore pressure development. Journal of Geophysical Research, 89(B13), 11539–11548.
Woodcock, N. H., & Mort, K. (2008). Classification of fault breccias and related fault rocks. Geological Magazine, 145(3), 435.
Wyder, R. F., & Mullis, J. (1998). Fluid impregnation and development of fault breccias in the Tavetsch basemant rocks (Sedrun, Central Swiss Alps). Tectonophysics, 294, 89–107.
Wyss, R. (1985). Die Urseren-Zone zwischen Ulrichen und Oberalppass und ihre Fortsetzung nach Westen und Osten. Geologisches Institut, 169.
Zangerl, C., Loew, S., & Eberhardt, E. (2006). Structure, geometry and formation of brittle discontinuities in anisotropic crystalline rocks of the Central Gotthard Massif, Switzerland. Eclogae Geologicae Helvetiae, 99(2), 271–290.
Zeng, Y., & Liou, J. G. (1982). Experimental investigation of yugawaralite-wairakite equilibrium. American Mineralogist, 67(9–10), 937–943.