Sản xuất thêm bằng laser với kẽm: chất lượng hình thành, cấu trúc và hành vi của tế bào

Bio-Design and Manufacturing - Tập 6 - Trang 103-120 - 2022
Mingli Yang1, Liuyimei Yang2, Shuping Peng3,4, Fang Deng1, Yageng Li5, Youwen Yang1,6, Cijun Shuai1,7
1Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang, China
2Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, China
3The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, China
4NHC Key Laboratory of Carcinogenesis, School of Basic Medical Science, Central South University, Changsha, China
5Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
6Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University, Tongling, China
7State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, China

Tóm tắt

Quá trình hợp nhất bột kim loại bằng laser (LPBF) cho phép sử dụng kẽm (Zn) phân hủy sinh học để sản xuất các mẫu cấy ghép chỉnh hình tùy chỉnh. Trong nghiên cứu này, chúng tôi khảo sát tác động của công suất laser và tốc độ quét đến sự phát triển của chất lượng bề mặt, độ đặc liên quan và cấu trúc trong quá trình LPBF của các mẫu cấy ghép Zn. Tăng cường công suất laser có khả năng giảm độ nhớt nóng chảy và lực căng bề mặt, từ đó cải thiện sự liên kết kim loại giữa các đường hàn liền kề. Các đường hàn không đồng đều và xoắn cũng trở nên liên tục và thẳng. Tốc độ quét có thể điều chỉnh nhiệt độ của vũng kim loại nóng chảy để kiểm soát sự định hướng tự nhiên của hạt, đạt được các định hướng tinh thể khác nhau và một cấu trúc yếu hơn. Quan trọng là, nó cũng tránh được sự giãn nở và co lại nhiệt do tích lũy năng lượng quá mức trong khung matrix, do đó giảm thiểu việc hình thành mật độ dislocation cao. Kết quả là, bằng cách chọn công suất laser và tốc độ quét hợp lý, các bộ phận LPBF thể hiện bề mặt phẳng và độ đặc cao hơn 99,5%. Độ cứng trung bình, độ bền cơ học và độ kéo dài của chúng lần lượt đạt 50,2 HV, 127,8 MPa và 7,6%. Thêm vào đó, các bộ phận thể hiện tỷ lệ phân hủy vừa phải và các đặc tính tạo xương tuyệt vời. Tất cả các kết quả này cung cấp một cơ sở để lựa chọn các thông số quy trình nhằm tối ưu hóa các tính chất toàn diện của các bộ phận Zn được xử lý bằng LPBF cho các ứng dụng phân hủy sinh học.

Từ khóa

#LPBF #kẽm #cấy ghép chỉnh hình #đặc tính sinh học #cấu trúc kim loại

Tài liệu tham khảo

Qi F, Gao X, Shuai Y et al (2022) Magnetic-driven wireless electrical stimulation in a scaffold. Compos Part B Eng 237:109864. https://doi.org/10.1016/j.compositesb.2022.109864 Du Y, Gu D, Xi L et al (2020) Laser additive manufacturing of bio-inspired lattice structure: forming quality, microstructure and energy absorption behavior. Mater Sci Eng A 773:138857. https://doi.org/10.1016/j.msea.2019.138857 Sarraf M, Rezvani Ghomi E et al (2022) A state-of-the-art review of the fabrication and characteristics of titanium and its alloys for biomedical applications. Bio-Des Manuf 5(2):371–395. https://doi.org/10.1007/s42242-021-00170-3 Santoni S, Gugliandolo SG, Sponchioni M et al (2021) 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-Des Manuf 5(1):14–42. https://doi.org/10.1007/s42242-021-00165-0 Shuai C, Wang Z, Peng S et al (2022) Water-responsive shape memory thermoplastic polyurethane scaffolds triggered at body temperature for bone defect repair. Mater Chem Front 6:1456–1469. https://doi.org/10.1039/D1QM01635K Jiao C, Xie D, He Z et al (2022) Additive manufacturing of bio-inspired ceramic bone scaffolds: structural design, mechanical properties and biocompatibility. Mater Des 217:110610. https://doi.org/10.1016/j.matdes.2022.110610 Liang H, Chao L, Xie D et al (2022) Trabecular-like Ti–6Al–4V scaffold for bone repair: a diversified mechanical stimulation environment for bone regeneration. Compos Part B Eng 241:110057. https://doi.org/10.1016/j.compositesb.2022.110057 Khorasani M, Gibson I, Ghasemi A et al (2020) On the role of wet abrasive centrifugal barrel finishing on surface enhancement and material removal rate of LPBF stainless steel 316L. J Manuf Process 59:523–534. https://doi.org/10.1016/j.jmapro.2020.09.058 Davoodi E, Montazerian H, Mirhakimi AS et al (2021) Additively manufactured metallic biomaterials. Bioact Mater 15:214–249. https://doi.org/10.1016/j.bioactmat.2021.12.027 Guaglione F, Caprio L, Previtali B et al (2021) Single point exposure LPBF for the production of biodegradable Zn-alloy lattice structures. Addit Manuf 48:102426. https://doi.org/10.1016/j.addma.2021.102426 Feng P, Shen S, Yang L et al (2023) Vertical and uniform growth of MoS2 nanosheets on GO nanosheets for efficient mechanical reinforcement in polymer scaffold. Virtual Phys Prototyp 18(1):e2115384. https://doi.org/10.1080/17452759.2022.2115384 Wang P, Wang S (2020) Computer-aided CT image processing and modeling method for tibia microstructure. Bio-Des Manuf 3(1):71–82. https://doi.org/10.1007/s42242-020-00063-x Li H, Li Z, Li N et al (2022) 3D printed high performance silver mesh for transparent glass heaters through liquid sacrificial substrate electric-field-driven jet. Small 18(17):2107811. https://doi.org/10.1002/smll.202107811 Bär F, Berger L, Jauer L et al (2019) Laser additive manufacturing of biodegradable magnesium alloy WE43: a detailed microstructure analysis. Acta Biomater 98:36–49. https://doi.org/10.1016/j.actbio.2019.05.056 Paul B, Lode A, Placht AM et al (2021) Cell–material interactions in direct contact culture of endothelial cells on biodegradable iron-based stents fabricated by laser powder bed fusion and impact of ion release. ACS Appl Mater Interf 14(1):439–451. https://doi.org/10.1021/acsami.1c21901 Yang M, Shuai Y, Yang Y et al (2022) In situ grown rare earth lanthanum on carbon nanofibre for interfacial reinforcement in Zn implants. Virtual Phys Prototyp 17(3):700–717. https://doi.org/10.1080/17452759.2022.2053929 Liu J, Yin B, Sun Z et al (2021) Hot cracking in ZK60 magnesium alloy produced by laser powder bed fusion process. Mater Lett 301:130283. https://doi.org/10.1016/j.matlet.2021.130283 Benn F, Kröger N, Zinser M et al (2021) Influence of surface condition on the degradation behaviour and biocompatibility of additively manufactured WE43. Mater Sci Eng C 124:112016. https://doi.org/10.1016/j.msec.2021.112016 Kabir H, Munir K, Wen C et al (2021) Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: biomechanical and biocorrosion perspectives. Bioact Mater 6(3):836–879. https://doi.org/10.1016/j.bioactmat.2020.09.013 Zhu D, Su Y, Young ML et al (2017) Biological responses and mechanisms of human bone marrow mesenchymal stem cells to Zn and Mg biomaterials. ACS Appl Mater Interf 9(33):27453–27461. https://doi.org/10.1021/acsami.7b06654 Wen P, Jauer L, Voshage M et al (2018) Densification behavior of pure Zn metal parts produced by selective laser melting for manufacturing biodegradable implants. J Mater Process Technol 258:128–137. https://doi.org/10.1016/j.jmatprotec.2018.03.007 Gong Y, Bi Z, Bian X et al (2020) Study on linear bio-structure print process based on alginate bio-ink in 3D bio-fabrication. Bio-Des Manuf 3(2):109–121. https://doi.org/10.1007/s42242-020-00065-9 Chen W, Yang Q, Huang S et al (2021) Laser power modulated microstructure evolution, phase transformation and mechanical properties in NiTi fabricated by laser powder bed fusion. J Alloys Compd 861:157959. https://doi.org/10.1016/j.jallcom.2020.157959 Li S, Lan X, Wang Z et al (2021) Microstructure and mechanical properties of Ti-6.5Al-2Zr-Mo-V alloy processed by laser powder bed fusion and subsequent heat treatments. Addit Manuf 48:102382. https://doi.org/10.1016/j.addma.2021.102382 Wen P, Qin Y, Chen Y et al (2019) Laser additive manufacturing of Zn porous scaffolds: shielding gas flow, surface quality and densification. J Mater Sci Technol 35(2):368–376. https://doi.org/10.1016/j.jmst.2018.09.065 Qin Y, Yang H, Liu A et al (2022) Processing optimization, mechanical properties, corrosion behavior and cytocompatibility of additively manufactured Zn-0.7Li biodegradable metals. Acta Biomater 142:388–401. https://doi.org/10.1016/j.actbio.2022.01.049 Jadhav SD, Goossens LR, Kinds Y et al (2021) Laser-based powder bed fusion additive manufacturing of pure copper. Addit Manuf 42:101990. https://doi.org/10.1016/j.addma.2021.101990 Tang X, Zhang S, Zhang C et al (2020) Optimization of laser energy density and scanning strategy on the forming quality of 24CrNiMo low alloy steel manufactured by SLM. Mater Character 170:110718. https://doi.org/10.1016/j.matchar.2020.110718 Lane B, Zhirnov I, Mekhontsev S et al (2020) Transient laser energy absorption, co-axial melt pool monitoring, and relationship to melt pool morphology. Addit Manuf 36:101504. https://doi.org/10.1016/j.addma.2020.101504 Li E, Wang L, Yu A et al (2021) A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process. Powder Technol 381:298–312. https://doi.org/10.1016/j.powtec.2020.11.061 Jadhav SD, Dadbakhsh S, Goossens L et al (2019) Influence of selective laser melting process parameters on texture evolution in pure copper. J Mater Process Technol 270:47–58. https://doi.org/10.1016/j.jmatprotec.2019.02.022 Guo C, Li S, Shi S et al (2020) Effect of processing parameters on surface roughness, porosity and cracking of as-built IN738LC parts fabricated by laser powder bed fusion. J Mater Process Technol 285:116788. https://doi.org/10.1016/j.jmatprotec.2020.116788 Yin J, Yang L, Yang X et al (2019) High-power laser-matter interaction during laser powder bed fusion. Addit Manuf 29:100778. https://doi.org/10.1016/j.addma.2019.100778 Bacaksiz E, Parlak M, Tomakin M et al (2008) The effects of zinc nitrate, zinc acetate and zinc chloride precursors on investigation of structural and optical properties of ZnO thin films. J Alloys Compd 466(1–2):447–450. https://doi.org/10.1016/j.jallcom.2007.11.061 De Rosa C, Park C, Thomas EL et al (2000) Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405(6785):433–437. https://doi.org/10.1038/35013018 Olakanmi EO, Cochrane R, Dalgarno K (2015) A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477. https://doi.org/10.1016/j.pmatsci.2015.03.002 Kurz W, Giovanola B, Trivedi R (1986) Theory of microstructural development during rapid solidification. Acta Metall 34(5):823–830. https://doi.org/10.1016/0001-6160(86)90056-8 Garibaldi M, Ashcroft I, Simonelli M et al (2016) Metallurgy of high-silicon steel parts produced using selective laser melting. Acta Mater 110:207–216. https://doi.org/10.1016/j.actamat.2016.03.037 Gäumann M, Bezencon C, Canalis P et al (2001) Single-crystal laser deposition of superalloys: processing–microstructure maps. Acta Mater 49(6):1051–1062. https://doi.org/10.1016/S1359-6454(00)00367-0 Chen Y, Yue H, Wang X (2018) Microstructure, texture and tensile property as a function of scanning speed of Ti-47Al-2Cr-2Nb alloy fabricated by selective electron beam melting. Mater Sci Eng A 713:195–205. https://doi.org/10.1016/j.msea.2017.12.020 Lu Z, Zhang C, Deng N et al (2022) Influence of selective laser melting process parameters on microstructure and properties of a typical Ni-based superalloy. Acta Metall Sin (Engl Lett). https://doi.org/10.1007/s40195-022-01401-x Karthik G, Kim ES, Zargaran A et al (2022) Role of cellular structure on deformation twinning and hetero-deformation induced strengthening of laser powder-bed fusion processed CuSn alloy. Addit Manuf 54:102744. https://doi.org/10.1016/j.addma.2022.102744 Haghdadi N, Ledermueller C, Chen H et al (2022) Evolution of microstructure and mechanical properties in 2205 duplex stainless steels during additive manufacturing and heat treatment. Mater Sci Eng A 835:142695. https://doi.org/10.1016/j.msea.2022.142695 Song E, Jeon H, Gwak EJ et al (2022) Grain boundary-assisted resistance to crack propagation in nanoporous gold with fine grains. Scr Mater 215:114708. https://doi.org/10.1016/j.scriptamat.2022.114708 Liang X, Liu Z, Wang B (2020) Dynamic recrystallization characterization in Ti-6Al-4V machined surface layer with process-microstructure-property correlations. Appl Surf Sci 530:147184. https://doi.org/10.1016/j.apsusc.2020.147184 Jarzębska A, Bieda M, Maj Ł et al (2020) Controlled grain refinement of biodegradable Zn-Mg alloy: the effect of magnesium alloying and multi-pass hydrostatic extrusion preceded by hot extrusion. Metall Mater Trans A 51(12):6784–6796. https://doi.org/10.1007/s11661-020-06032-4 Kubásek J, Vojtěch D, Jablonská E et al (2016) Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater Sci Eng C 58:24–35. https://doi.org/10.1016/j.msec.2015.08.015 Li H, Xie X, Zheng Y et al (2015) Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep 5(1):1–14. https://doi.org/10.1038/srep10719 Liu X, Sun J, Zhou F et al (2016) Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application. Mater Des 94:95–104. https://doi.org/10.1016/j.matdes.2015.12.128 Tong X, Zhang D, Zhang X et al (2018) Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn–5Ge alloy for biodegradable implant materials. Acta Biomater 82:197–204. https://doi.org/10.1016/j.actbio.2018.10.015 Levy GK, Goldman J, Aghion E (2017) The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals 7(10):402. https://doi.org/10.3390/met7100402 Van Liempt P, Bos C, Sietsma J (2016) A physically based yield criterion II. Incorporation of Hall Petch effect and resistance due to thermally activated dislocation glide. Mater Sci Eng A 652:7–13. https://doi.org/10.1016/j.msea.2015.11.035 Yang Y, Yang M, He C et al (2021) Rare earth improves strength and creep resistance of additively manufactured Zn implants. Compos Part B Eng 216:108882. https://doi.org/10.1016/j.compositesb.2021.108882 Lietaert K, Zadpoor AA, Sonnaert M et al (2020) Mechanical properties and cytocompatibility of dense and porous Zn produced by laser powder bed fusion for biodegradable implant applications. Acta Biomater 110:289–302. https://doi.org/10.1016/j.actbio.2020.04.006 Bigham A, Foroughi F, Rezvani Ghomi E et al (2020) The journey of multifunctional bone scaffolds fabricated from traditional toward modern techniques. Bio-Des Manuf 3(4):281–306. https://doi.org/10.1007/s42242-020-00094-4 Shuai C, Yang F, Shuai Y et al (2022) Silicon dioxide nanoparticles decorated on graphene oxide nanosheets and their application in poly(L-lactic acid) scaffold. J Adv Res. https://doi.org/10.1088/1361-6528/ac5aee Gao C, Zeng Z, Peng S et al (2022) Magnetostrictive bulk Fe-Ga alloys prepared by selective laser melting for biodegradable implant applications. Mater Des 220:110861. https://doi.org/10.1016/j.matdes.2022.110861 Jiang B, Xiang Q, Atrens A et al (2017) Influence of crystallographic texture and grain size on the corrosion behaviour of as-extruded Mg alloy AZ31 sheets. Corros Sci 126:374–380. https://doi.org/10.1016/j.corsci.2017.08.004 Zhao S, Mcnamara CT, Bowen PK et al (2017) Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling. Metall Mater Trans A 48(3):1204–1215. https://doi.org/10.1007/s11661-016-3901-0 Cheng J, Liu B, Wu Y et al (2013) Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. J Mater Sci Technol 29(7):619–627. https://doi.org/10.1016/j.jmst.2013.03.019 Chen SQ, Shao Y, Cheng MT et al (2017) Effect of residual stress on azo dye degradation capability of Fe-based metallic glass. J Non-Cryst Sol 473:74–78. https://doi.org/10.1016/j.jnoncrysol.2017.07.030 Peng J, Zhang Z, Long C et al (2020) Effect of crystal orientation and {\({\text{10}\! \!\stackrel{\mathrm{-}}{1}\!\!\text{2}} \)} twins on the corrosion behaviour of AZ31 magnesium alloy. J Alloys Compd 827:154096. https://doi.org/10.1016/j.jallcom.2020.154096 Wang B, Xu D, Dong J et al (2014) Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg–3Al–1Zn (wt.%) bar. Scr Mater 88:5–8. https://doi.org/10.1016/j.scriptamat.2014.06.015 Li X, Yuan Y, Liu L et al (2020) 3D printing of hydroxyapatite/tricalcium phosphate scaffold with hierarchical porous structure for bone regeneration. Bio-Des Manuf 3(1):15–29. https://doi.org/10.1007/s42242-019-00056-5 Shuai C, Chen X, He C et al (2022) Construction of magnetic nanochains to achieve magnetic energy coupling in scaffold. Biomater Res. https://doi.org/10.21203/rs.3.rs-1448231/v1 Shuai C, Yuan X, Shuai Y et al (2022) Nitrogen-doped carbon-ZnO heterojunction derived from ZIF-8: a photocatalytic antibacterial strategy for scaffold. Mater Today Nano 18:100210. https://doi.org/10.1016/j.mtnano.2022.100210 Yang Y, Zan J, Shuai Y et al (2022) In situ growth of a metal–organic framework on graphene oxide for the chemo-photothermal therapy of bacterial infection in bone repair. ACS Appl Mater Interf 14:21996–22005. https://doi.org/10.1021/acsami.2c04841 Zan J, Qian G, Deng F et al (2022) Dilemma and breakthrough of biodegradable poly-l-lactic acid in bone tissue repair. J Mater Res Technol 17:2369–2378. https://doi.org/10.1016/j.jmrt.2022.01.164 Narita H, Itoh S, Imazato S et al (2010) An explanation of the mineralization mechanism in osteoblasts induced by calcium hydroxide. Acta Biomater 6(2):586–590. https://doi.org/10.1016/j.actbio.2009.08.005 Mitchell RE, Huitema L, Skinner R et al (2013) New tools for studying osteoarthritis genetics in zebrafish. Osteoarthr Cartil 21(2):269–278. https://doi.org/10.1016/j.joca.2012.11.004 Kim JH, Jeon J, Shin M et al (2014) Regulation of the catabolic cascade in osteoarthritis by the zinc-ZIP8-MTF1 axis. Cell 156(4):730–743. https://doi.org/10.1016/j.cell.2014.01.007