Laser Welding of Thin Copper and Aluminum Sheets: Feasibility and Challenges in Continuous-Wave Welding of Dissimilar Metals

Springer Science and Business Media LLC - Tập 6 Số 2 - Trang 136-157 - 2019
Alessandro Fortunato1, Alessandro Ascari1
1Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Albright, C.E.: The fracture toughness testing of steel-aluminum deformation welds. Eng. Fract. Mech. 15(1–2), 193–203 (1981). https://doi.org/10.1016/0013-7944(81)90117-X

Date, H., Kobayakawa, S., Naka, M.: Microstructure and bonding strength of impact-welded aluminium–stainless steel joints. J. Mater. Process. Technol. 85(1–3), 166–170 (1999). https://doi.org/10.1016/S0924-0136(98)00284-2

Fukumoto, S., Tsubakino, H., Okita, K., Aritoshi, M., Tomita, T.: Amorphization by friction welding between 5052 aluminum alloy and 304 stainless steel. Scr. Mater. 42(8), 807–812 (2000). https://doi.org/10.1016/S1359-6462(00)00299-2

Lee, W.B., Schmuecker, M., Mercardo, U.A., Biallas, G., Jung, S.B.: Interfacial reaction in steel–aluminum joints made by friction stir welding. Scr. Mater. 55(4), 355–358 (2006). https://doi.org/10.1016/j.scriptamat.2006.04.028

Sierra, G., Peyre, P., Deschaux-Beaume, F., Stuart, D., Fras, G.: Steel to aluminium key-hole laser welding. Mater. Sci. Eng. A. 447(1–2), 197–208 (2007). https://doi.org/10.1016/j.msea.2006.10.106

Mai, T.A., Spowage, A.C.: Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium. Mater. Sci. Eng. A. 374(1–2), 224–233 (2004). https://doi.org/10.1016/j.msea.2004.02.025

Abbasi, M., Karimi Taheri, A., Salehi, M.T.: Growth rate of intermetallic compounds in Al/cu bimetal produced by cold roll welding process. J. Alloys Compd. 319(1–2), 233–241 (2001). https://doi.org/10.1016/S0925-8388(01)00872-6

Lee, W.B., Bang, K.S., Jung, S.B.: Effects of intermetallic compound on the electrical and mechanical properties of friction welded cu/Al bimetallic joints during annealing. J. Alloys Compd. 390(1–2), 212–219 (2005). https://doi.org/10.1016/j.jallcom.2004.07.057

Panaskar, N., Terkar, R.: A review on recent advances in friction stir lap welding of Aluminium and copper. Mater. Today. 4(8), 8387–8393 (2017). https://doi.org/10.1016/j.matpr.2017.07.182

Wei, Y., Li, J., Xiong, J., Zhang, F.: Investigation of interdiffusion and intermetallic compounds in Al–cu joint produced by continuous drive friction welding. Engr. Sci. Tech. 19(1), 90–95 (2016). https://doi.org/10.1016/j.jestch.2015.05.009

Fei, X., Ye, Y., Jin, L., Wang, H., Lv, S.: Special welding parameters study on cu/Al joint in laser-heated friction stir welding. J. Mater. Process. Technol. 256, 160–171 (2018). https://doi.org/10.1016/j.jmatprotec.2018.02.004

Raoelison, R.N., Sapanathan, T., Buiron, N., Rachik, N.: Magnetic pulse welding of Al/Al and Al/cu metal pairs: consequences of the dissimilar combination on the interfacial behavior during the welding process. J. Manuf. Process. 20(1), 112–127 (2015). https://doi.org/10.1016/j.jmapro.2015.09.003

Fujii, H.T., Endo, H., Sato, Y.S., Kokawa, H.: Interfacial microstructure evolution and weld formation during ultrasonic welding of Al alloy to cu. Mater. Charact. 139, 233–240 (2018). https://doi.org/10.1016/j.matchar.2018.03.010

Weigl M, Albert F, Schmidt M. Enhancing the ductility of laser-welded copper-aluminum connections by using adapted filler materials. Phys. Procedia 2011;12(B):332–338. https://doi.org/10.1016/j.phpro.2011.03.141

Solchenbach, T., Plapper, P.: Mechanical characteristics of laser braze-welded aluminium–copper connections. Opt. Laser Technol. 54, 249–256 (2013). https://doi.org/10.1016/j.optlastec.2013.06.003

Lee, S.J., Nakamura, H., Kawahito, Y., Katayama, S.: Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and cu sheets. Sci. Technol. Weld. Join. 19(2), 111–118 (2014). https://doi.org/10.1179/1362171813Y.0000000168

Zuo, D., Hu, S., Shen, J., Xue, Z.: Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints. Mater. Des. 58, 357–362 (2014). https://doi.org/10.1016/j.matdes.2014.02.004

Stritt, P., Hagenlocher, C., Kizler, C., Weber, R., Rüttimann, C., Graf, T.: Laser spot welding of copper-aluminum joints using a pulsed dual wavelength laser at 532 and 1064nm. Phys. Procedia. 56, 759–767 (2014). https://doi.org/10.1016/j.phpro.2014.08.083

Fetzer, F., Jarwitz, M., Stritt, P., Weber, R., Graf, T.: Fine-tuned remote laser welding of aluminum to copper with local beam oscillation. Phys. Procedia. 83, 455–462 (2016). https://doi.org/10.1016/j.phpro.2016.08.047

Schmalen, P., Plapper, P., Peral, I., Titov, I., Vallcorba, O., Rius, J.: Composition and phases in laser welded Al-cu joints by synchrotron x-ray microdiffraction. Procedia CIRP. 74, 27–32 (2018). https://doi.org/10.1016/j.procir.2018.08.006

Reisgen, U., Olschok, S., Jakobs, S., Holtum, N.: Influence of the degree of dilution with laser beam vacuum-welded cu-Al mixed joints on the electrical properties. Procedia CIRP. 74, 23–26 (2018). https://doi.org/10.1016/j.procir.2018.08.022

Kermanidis, T., Christodoulou, P.I., Hontzopoulos, E., Haidemenopoulos, G.N., Kamoutsi, H., Zervaki, A.D.: Mechanical performance of laser spot-welded joints in Al-Al/cu solar thermal absorbers. Mater. Des. 155, 148–160 (2018). https://doi.org/10.1016/j.matdes.2018.05.052