Large-time behavior of solutions of parabolic equations on the real line with convergent initial data II: Equal limits at infinity

Journal de Mathématiques Pures et Appliquées - Tập 153 - Trang 137-186 - 2021
Antoine Pauthier1,2, Peter Poláčik1
1School of Mathematics, University of Minnesota, MN 55455, Minneapolis, USA
2University of Bremen, Bibliothekstr. 5, 28359, Bremen, Germany

Tài liệu tham khảo

Angenent, 1988, The zero set of a solution of a parabolic equation, J. Reine Angew. Math., 390, 79 Bartsch, 2011, Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations, J. Eur. Math. Soc., 13, 219, 10.4171/JEMS/250 Brunovský, 1989, Connecting orbits in scalar reaction diffusion equations. II. The complete solution, J. Differ. Equ., 81, 106, 10.1016/0022-0396(89)90180-0 Chen, 2005, Existence and uniqueness of entire solutions for a reaction-diffusion equation, J. Differ. Equ., 212, 62, 10.1016/j.jde.2004.10.028 Chen, 2006, Entire solutions of reaction-diffusion equations with balanced bistable nonlinearities, Proc. R. Soc. Edinb. A, 136, 1207, 10.1017/S0308210500004959 Chen, 1998, A strong unique continuation theorem for parabolic equations, Math. Ann., 311, 603, 10.1007/s002080050202 Chen, 1995, Gradient-like structure and Morse decompositions for time-periodic one-dimensional parabolic equations, J. Dyn. Differ. Equ., 7, 73, 10.1007/BF02218815 Chen, 2018, Entire solutions originating from monotone fronts to the Allen-Cahn equation, Physica D, 378/379, 1, 10.1016/j.physd.2018.04.003 Conley, 1978, Isolated Invariant Sets and the Morse Index, vol. 38 Du, 2010, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12, 279, 10.4171/JEMS/198 Du, 2015, Locally uniform convergence to an equilibrium for nonlinear parabolic equations on RN, Indiana Univ. Math. J., 64, 787, 10.1512/iumj.2015.64.5535 Feireisl, 1997, On the long time behaviour of solutions to nonlinear diffusion equations on Rn, Nonlinear Differ. Equ. Appl., 4, 43, 10.1007/PL00001410 Feireisl, 2000, Structure of periodic solutions and asymptotic behavior for time-periodic reaction-diffusion equations on R, Adv. Differ. Equ., 5, 583 Fiedler, 1986, Connections in scalar reaction diffusion equations with Neumann boundary conditions, vol. 1192, 123 Fiedler, 1996, Heteroclinic orbits of semilinear parabolic equations, J. Differ. Equ., 125, 239, 10.1006/jdeq.1996.0031 Fife, 1977, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., 65, 335, 10.1007/BF00250432 Földes, 2011, Convergence to a steady state for asymptotically autonomous semilinear heat equations on RN, J. Differ. Equ., 251, 1903, 10.1016/j.jde.2011.04.002 Gallay, 2001, Energy flow in extended gradient partial differential equations, J. Dyn. Differ. Equ., 13, 757, 10.1023/A:1016624010828 Gallay, 2015, Distribution of energy and convergence to equilibria in extended dissipative systems, J. Dyn. Differ. Equ., 27, 653, 10.1007/s10884-014-9376-z Guo, 2005, Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations, Discrete Contin. Dyn. Syst., 12, 193, 10.3934/dcds.2005.12.193 Hamel, 1999, Entire solutions of the KPP equation, Commun. Pure Appl. Math., 52, 1255, 10.1002/(SICI)1097-0312(199910)52:10<1255::AID-CPA4>3.0.CO;2-W Marsden, 1976, The Hopf Bifurcation and Its Applications, vol. 19 Matano, 2016, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part I: A general quasiconvergence theorem and its consequences, Commun. Partial Differ. Equ., 41, 785, 10.1080/03605302.2016.1156697 Matano, 2017, An entire solution of a bistable parabolic equation on R with two colliding pulses, J. Funct. Anal., 272, 1956, 10.1016/j.jfa.2016.11.006 Matano, 2020, Dynamics of nonnegative solutions of one-dimensional reaction-diffusion equations with localized initial data. Part II: The generic case, Commun. Partial Differ. Equ., 45, 483, 10.1080/03605302.2019.1700273 Mischaikow, 1995, Asymptotically autonomous semiflows: chain recurrence and Lyapunov functions, Trans. Am. Math. Soc., 347, 1669, 10.1090/S0002-9947-1995-1290727-7 Morita, 2006, Entire solutions with merging fronts to reaction-diffusion equations, J. Dyn. Differ. Equ., 18, 841, 10.1007/s10884-006-9046-x Morita, 2010, Traveling wave solutions and entire solutions to reaction-diffusion equations, Sūgaku Expo., 23, 213 Pauthier, 2018, Large-time behavior of solutions of parabolic equations on the real line with convergent initial data, Nonlinearity, 31, 4423, 10.1088/1361-6544/aaced3 Poláčik, 2015, Examples of bounded solutions with nonstationary limit profiles for semilinear heat equations on R, J. Evol. Equ., 15, 281, 10.1007/s00028-014-0260-4 Poláčik, 2015, Spatial trajectories and convergence to traveling fronts for bistable reaction-diffusion equations, 405 Poláčik, 2016, Threshold behavior and non-quasiconvergent solutions with localized initial data for bistable reaction-diffusion equations, J. Dyn. Differ. Equ., 28, 605, 10.1007/s10884-014-9421-y Poláčik, 2017, Convergence and quasiconvergence properties of solutions of parabolic equations on the real line: an overview, vol. 205, 172 Poláčik, 2020, Entire solutions and a Liouville theorem for a class of parabolic equations on the real line, Proc. Am. Math. Soc., 148, 2997, 10.1090/proc/14978 Poláčik, 2020, Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R, Mem. Am. Math. Soc., 264 E. Risler, Global relaxation of bistable solutions for gradient systems in one unbounded spatial dimension, preprint. E. Risler, Global behaviour of bistable solutions for gradient systems in one unbounded spatial dimension, preprint. Volpert, 1994, Traveling Wave Solutions of Parabolic Systems, vol. 140 Wolfrum, 2002, A sequence of order relations: encoding heteroclinic connections in scalar parabolic PDE, J. Differ. Equ., 183, 56, 10.1006/jdeq.2001.4114