Những yếu tố căng thẳng quy mô lớn ảnh hưởng đến rạn san hô: nhiệt độ bề mặt đại dương và độ bão hòa aragonit của nước biển bề mặt trong 400 năm tới

Coral Reefs - Tập 31 - Trang 309-319 - 2012
K. J. Meissner1, T. Lippmann1, A. Sen Gupta1
1Climate Change Research Centre, Faculty of Science, University of New South Wales, Sydney, Australia

Tóm tắt

Một phần ba các rạn san hô của thế giới đã biến mất trong 30 năm qua, và một phần ba khác hiện đang bị đe dọa bởi nhiều yếu tố căng thẳng khác nhau. Các yếu tố căng thẳng toàn cầu chính đối với rạn san hô đã được xác định là sự thay đổi trong nhiệt độ bề mặt biển (SST) và sự thay đổi trong độ bão hòa aragonit của nước biển bề mặt (Ωarag). Trong bài viết này, chúng tôi sử dụng một mô hình khí hậu có độ phức tạp trung bình, bao gồm một mô hình tuần hoàn chung đại dương và một chu trình carbon đã được ghép nối hoàn toàn, kết hợp với các quan sát hiện tại về sự biến động SST liên năm để điều tra ba con đường tập trung đại diện của IPCC (RCP 3PD, RCP 4.5 và RCP 8.5), và ảnh hưởng của chúng đến các yếu tố môi trường gây stress cho rạn san hô liên quan đến SST đại dương mở và Ωarag đại dương mở trong 400 năm tới. Các mô phỏng của chúng tôi cho thấy rằng đối với các kịch bản RCP 4.5 và 8.5, ngưỡng 3.3 cho độ bão hòa aragonit trung bình theo chiều ngang và hàng năm sẽ bị vượt qua trong nửa đầu thế kỷ này. Đến năm 2030, 66-85% các khu vực rạn san hô được xem xét trong nghiên cứu này sẽ trải qua các sự kiện tẩy trắng nghiêm trọng ít nhất một lần mỗi 10 năm. Bất kể con đường tập trung, gần như mọi rạn san hô đã được xem xét trong nghiên cứu này (>97%) sẽ trải qua căng thẳng nhiệt nghiêm trọng vào năm 2050. Trong tất cả các mô phỏng của chúng tôi, sự thay đổi trong độ bão hòa aragonit của nước biển bề mặt dẫn đến sự thay đổi trong nhiệt độ.

Từ khóa

#Rạn san hô #Nhiệt độ bề mặt đại dương #Độ bão hòa aragonit #IPCC #Căng thẳng môi trường #Biến đổi khí hậu.

Tài liệu tham khảo

Andersson AJ, Mackenzie FT, Bates NR (2008) Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Mar Ecol Prog Ser 373:265–273 Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446 Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biol 17:1798–1808 Archer D (1996) A data-driven model of the global calcite lysocline. Global Biogeochem Cycles 10:511–526 Atkinson MJ, Cuet P (2008) Possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Mar Ecol Prog Ser 373:249–256 Avis CA, Weaver AJ, Meissner KJ (2011) Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geoscience. doi:10.1038/ngeo1160 Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing sea water fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846 Bates NR, Amat A, Andersson AJ (2010) Feedbacks and responses of coral calcification on the Bermuda reef system to seasonal changes in biological processes and ocean acidification. Biogeosciences 7:2509–2530 Blanchon P, Shaw J (1995) Reef drowning during the last deglaciation - evidence for catastrophic sea-level rise and ice-sheet collapse - Reply. Geology 23:958–959 Boville BA, Gent PR (1998) The NCAR Climate System Model, version one. J Clim 11:1115–1130 Boylan P, Kleypas J (2008) New insights into the exposure and sensitivity of coral reefs to ocean warming. Proc 11th Int Coral Reef Symp 2:854–858 Brown BE, Dunne RP, Goodson MS, Douglas AE (2002) Experience shapes the susceptibility of a reef coral to bleaching. Coral Reefs 21:119–126 Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS ONE 2(8): e711. doi:10.1371/journal.pone.0000711 Buddemeier RW, Smith SV (1988) Coral-reef growth in an era of rapidly rising sea-level—predictions and suggestions for long-term research. Coral Reefs 7:51–56 Castillo KD, Helmuth BST (2005) Influence of thermal history on the response of Montastraea annularis to short-term temperature exposure. Mar Biol 148:261–270 Chalker BE, Barnes DJ, Dunlap WC, Jokiel PL (1988) Light and reef-building corals. Interdisc Sci Rev 13:222–237 Clarke L, Edmonds J, Jacoby H, Pitcher H, Reilly J, Richels R (2007) Scenarios of greenhouse gas emissions and atmospheric concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological & Environmental Research, Washington, DC, USA Coles SL, Jokiel PL, Lewis CR (1976) Thermal tolerance in tropical versus subtropical Pacific reef corals. Pac Sci 30:159–166 Collins M, Soon-Il A, Cai W, Ganachaud A, Guilyardi E, Fei–Fei J, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397 Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett 37:L10701 Domingues CM, Church JA, White NJ, Glecker PJ, Wijffels SE, Barker PM, Dunn JR (2008) Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 453:1090–1093 Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Global Change Biol 11:2251–2265 Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. J Clim 22:2501–2511 Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer Science, New York, pp 151–176 Ewen TL, Weaver AJ, Eby M (2004) Sensitivity of the inorganic ocean carbon cycle to future climate warming in the UVic coupled model. Atmos-Ocean 42:23–42 Frankignoulle M, Gattuso JP, Biondo R, Bourgel I, Copin-Montégut G, Pichon M (1996) Carbon fluxes in coral reefs. II. Eulerian study of inorganic carbon dynamics and measurement of air-sea CO2 exchanges. Mar Ecol Prog Ser 145:123–132 Gattuso J-P, Pichon M, Delesalle D, Canon C, Frankignoulle M (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Mar Ecol Prog Ser 145:109–121 Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46 Glynn PW (1988) El-Niño Southern Oscillation 1982–1983—Nearshore population, community, and ecosystem responses. Annu Rev Ecol Syst 19:309–345 Glynn PW (1991) Coral-reef bleaching in the 1980s and possible connections with global warming. Trends Ecol Evol 6:175–179 Golbuu Y, Victor S, Penlan L, Idip D, Emurois C (2007) Palau’s coral reefs show differential habitat recovery following the 1998 bleaching event. Coral Reefs 26:319–332 Goreau TJ, Hayes RL (1994) Coral bleaching and ocean hot-spots. Ambio 23:176–180 Graham NAJ, Nash KL, Kool JT (2011) Coral reef recovery dynamics in a changing world. Coral Reefs 30:283–294 Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models, progress and challenges. Bull Am Meterol Soc 90:325–340 Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22:551–558 Halford A, Cheal AJ, Ryan D, Williams DM (2004) Resilience to large-scale disturbance in coral and fish assemblages on the Great Barrier Reef. Ecology 85:1892–1905 Hibler WD (1979) Dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846 Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866 Hoegh-Guldberg O (2004) Coral reefs in a century of rapid environmental change. Symbiosis 37:1–31 Hoegh-Guldberg O (2005) Low coral cover in a high-CO2 world. J Geophys Res C 110: C09S06. doi:10.1029/2004JC002528 Hoegh-Guldberg O (2008) Climate change and coral reefs: Trojan horse or false prophecy? Coral Reefs 28:569–575 Hoegh-Guldberg O (2011) Coral reef ecosystems and anthropogenic climate change. Reg Environ Change 11:S215–S227 Hoegh-Guldberg O, Fine M, Skirving W, Johnstone R, Dove S, Strong A (2005) Coral bleaching following wintry weather. Limnol Oceanogr 50:265–271 Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742 Hunke EC, Dukowicz JK (1997) An elastic-viscous-plastic model for sea ice dynamics. J Phys Oceanogr 27:1849–1867 Jackson JBC (1992) Pleistocene perspectives on coral-reef community structure. Am Zool 32:719–731 Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mecocosm investigation. Coral Reefs 27:473–483 Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471 Kawahata H, Suzuki A, Ayukai T, Goto K (2000) Distribution of the fugacity of carbon dioxide in the surface seawater of the Great Barrier Reef. Mar Chem 72:257–272 Kleypas JA, Langdon C (2006) Coral reefs and changing seawater chemistry. In: Phinney JT, Hoegh-Guldberg O, Kleypas JA, Skirving W, Strong A (eds) Coral reefs and climate change: science and management. AGU Monogr Ser, Coastal and estuarine studies. American Geophysical Union, Washington, DC, pp 73–110 Kleypas JA, McManus JW, Menez LAB (1999a) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159 Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999b) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120 Kleypas JA, Anthony KRN, Gattuso J-P (2011) Coral reefs modify their seawater carbon chemistry–case study from a barrier reef (Mooréa, French Polynesia). Global Change Biol 17:3667–3678 Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res C 110: C09S07. doi:10.1029/2004JC002576 Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654 Leclercq N, Gattuso JP, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564 Leloup J, Lengaigne M, Boulanger J-P (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291 Liu G, Strong AE, Skirving W (2003) Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. EOS Trans Am Geophys Union 84:137 Marubini F, Ferrier-Pages C, Cuif JP (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate-ion concentration: a cross-family comparison. Proc R Soc Lond B 270:179–184 Matthews HD, Weaver AJ, Meissner KJ (2005) Terrestrial carbon cycle dynamics under recent and future climate change. J Clim 18:1609–1628 McPhaden MJ (1999) Genesis and evolution of the 1997–98 El Niño. Science 283:950–954 Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY Meissner KJ, Weaver AJ, Matthews HD, Cox PM (2003) The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model. Clim Dyn 21:515–537 Montaggioni LF (2005) History of Indo-Pacific coral reef systems since the last glaciation: Development patterns and controlling factors. Earth Sci Rev 71:1–75 Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756 Nakicenovic N, Swart R (eds) (2000) Emission scenarios. Cambridge University Press, Geneva, Switzerland Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65(2):559–576 Oliver J, Berkelmans R, Eakin M (2009) Coral bleaching in space and time (Chapter 3). In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns, processes, causes and consequences. Springer, Heidelberg, pp 21–39 Pacanowski RC (1995) MOM 2 documentation: Users guide and reference manual, Version 1.0 GFDL Ocean Group Technical Report. Geophysical Fluid Dynamics Laboratory, Princeton Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: Constancy during global change. Paleobiology 22:152–176 Riahi K, Grubler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74:887–935 Royal Society (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society: the science policy section, London Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cycles 22: GB1013. doi:10.1029/2007GB002953 Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293 Semtner AJ (1976) Model for thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6:379–389 Silverman J, Lazar B, Erez J (2007) Effect of aragonite saturation, temperature, and nutrients on the community calcification rate of a coral reef. J Geophys Res C 112:C05004 Smith SV, Veeh HH (1989) Mass balance of biogeochemically active materials (C, N, P) in a hypersaline gulf. Estuar Coast Shelf Sci 29:195–215 Strong AE, Kearns EJ, Gjovig KK (2000) Sea surface temperature signals from satellites - An update. Geophys Res Lett 27:1667–1670 Suzuki A, Kawahata H (1999) Partial pressure of carbon dioxide in coral reef lagoon waters: Comparative study of atolls and barrier reefs in the Indo-Pacific oceans. J Oceanogr 55:731–745 Suzuki A, Nakamori T, Kayanne H (1995) The mechanism of production enhancement in coral reef carbonate systems: model and empirical results. Sediment Geol 99:259–280 Tevena L, Karnauskas M, Logan CA, Bianucci L, Currie JC, Kleypas, JA (2011) Predicting coral bleaching hotspots: the role of regional variability in thermal stress and potential adaptation rates. Coral Reefs. doi:10.1007/s00338-011-0812-9 Toscano MA, Liu G, Guch IC, Casey KS, Strong AE (2000) Improved prediction of coral bleaching using high-resolution HotSpot anomaly mapping. 9th Int Coral Reef Symp:1143-1147 van Oldenborgh GJ, Philip SY, Collins M (2005) El Niño in a changing climate: a multi-model study. Ocean Science 1:81–95 van Vuuren DP, Den Elzen MGJ, Lucas PL, Eickhout B, Strengers BJ, van Ruijven B, Wonink S, van Houdt R (2007) Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim Change 81:119–159 Veron JEN (2008) A reef in time: the Great Barrier Reef from beginning to end. Belknap Press of Harvard University Press. Cambridge, Mass, USA Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: The critical importance of < 350 ppm CO2. Mar Pollut Bull 58:1428–1436 Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, Fanning AF, Holland MM, MacFadyen A, Matthews HD, Meissner KJ, Saenko O, Schmittner A, Wang HX, Yoshimori M (2001) The UVic Earth System Climate Model: Model description, climatology, and applications to past, present and future climates. Atmos-Ocean 39:361–428 Webster JM, Clague DA, Riker-Coleman K, Gallup C, Braga JC, Potts D, Moore JG, Winterer EL, Paull CK (2004) Drowning of the - 150 m reef off Hawaii: A casualty of global meltwater pulse 1A? Geology 32:249–252 Wilkinson CR (1999) Global and local threats to coral reef functioning and existence: review and predictions. Mar Freshw Res 50:867–878 Wilkinson C (2000) Status of coral reefs of the world: 2000. In: Wilkinson C (ed) Global Coral Reef Monitoring Network. Australian Institute of Marine Science, Townsville Wilkinson C (2008) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre. Townsville, Australia Yamano H, Sugihara K, Nomura K (2011) Rapid poleward range expansion of tropical reef corals in response to rising sea surface temperatures. Geophys Res Lett 38: L04601. doi:10.1029/2010GL046474 Yates KK, Halley RB (2006) CO3 2− concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 3:357–369