Large-scale parallel topology optimization of three-dimensional incompressible fluid flows in a level set, anisotropic mesh adaptation framework
Tài liệu tham khảo
Bendsøe, 1988, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197, 10.1016/0045-7825(88)90086-2
Bendsøe, 2003
Alexandersen, 2020, A review of topology optimisation for fluid-based problems, Fluids, 5, 29, 10.3390/fluids5010029
Sigmund, 2013, Topology optimization approaches, Struct. Multidiscip. Optim., 48, 1031, 10.1007/s00158-013-0978-6
Suzuki, 1991, A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Engrg., 93, 291, 10.1016/0045-7825(91)90245-2
Allaire, 1997, Shape optimization by the homogenization method, Numer. Math., 76, 27, 10.1007/s002110050253
Sethian, 2000, Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489, 10.1006/jcph.2000.6581
Wang, 2003, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227, 10.1016/S0045-7825(02)00559-5
Allaire, 2004, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363, 10.1016/j.jcp.2003.09.032
Van Dijk, 2013, Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 437, 10.1007/s00158-013-0912-y
Andreasen, 2020, Level set topology and shape optimization by density methods using cut elements with length scale control, Struct. Multidiscip. Optim., 62, 685, 10.1007/s00158-020-02527-1
Duan, 2015, Adaptive mesh method for topology optimization of fluid flow, Appl. Math. Lett., 44, 40, 10.1016/j.aml.2014.12.016
Jensen, 2018, Topology optimization of Stokes flow on dynamic meshes using simple optimizers, Comput. & Fluids, 174, 66, 10.1016/j.compfluid.2018.07.011
Duan, 2016, Optimality criteria coupled adaptive mesh method for optimal shape design of Stokes flow, Math. Methods Appl. Sci., 39, 3910, 10.1002/mma.3840
Duan, 2016, Topology optimization of incompressible Navier–Stokes problem by level set based adaptive mesh method, Comput. Math. Appl., 72, 1131, 10.1016/j.camwa.2016.06.034
Garcke, 2015, Numerical approximation of phase field based shape and topology optimization for fluids, SIAM J. Sci. Comput., 37, A1846, 10.1137/140969269
Feppon, 2019, Shape optimization of a coupled thermal fluid–structure problem in a level set mesh evolution framework, SeMA, 76, 413, 10.1007/s40324-018-00185-4
Feppon, 2020, Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing, J. Comput. Phys., 417, 10.1016/j.jcp.2020.109574
Feppon, 2021, Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers, Comput. Methods Appl. Mech. Engrg., 376, 10.1016/j.cma.2020.113638
Talischi, 2014, Polygonal finite elements for incompressible fluid flow, Internat. J. Numer. Methods Fluids, 74, 134, 10.1002/fld.3843
Antonietti, 2017, On the virtual element method for topology optimization on polygonal meshes: a numerical study, Comput. Math. Appl., 74, 1091, 10.1016/j.camwa.2017.05.025
Suárez, 2022, On the virtual element method for topology optimization of non-Newtonian fluid-flow problems, Eng. Comput., 38, 5445, 10.1007/s00366-022-01637-2
Gain, 2015, Topology optimization using polytopes, Comput. Methods Appl. Mech. Engrg., 293, 411, 10.1016/j.cma.2015.05.007
Villanueva, 2017, CutFEM topology optimization of 3D laminar incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 320, 444, 10.1016/j.cma.2017.03.007
Jensen, 2016, Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm, Struct. Multidiscip. Optim., 54, 831, 10.1007/s00158-016-1439-9
Micheletti, 2019, Topology optimization driven by anisotropic mesh adaptation: Towards a free-form design, Comput. Struct., 214, 60, 10.1016/j.compstruc.2019.01.005
Borrvall, 2001, Large-scale topology optimization in 3D using parallel computing, Comput. Methods Appl. Mech. Engrg., 190, 6201, 10.1016/S0045-7825(01)00216-X
Evgrafov, 2008, Large-scale parallel topology optimization using a dual-primal substructuring solver, Struct. Multidiscip. Optim., 36, 329, 10.1007/s00158-007-0190-7
Aage, 2013, Parallel framework for topology optimization using the method of moving asymptotes, Struct. Multidiscip. Optim., 47, 493, 10.1007/s00158-012-0869-2
Aage, 2015, Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework, Struct. Multidiscip. Optim., 51, 565, 10.1007/s00158-014-1157-0
Alexandersen, 2016, Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection, Int. J. Heat Mass Transfer, 100, 876, 10.1016/j.ijheatmasstransfer.2016.05.013
Othmer, 2008, A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows, Internat. J. Numer. Methods Fluids, 58, 861, 10.1002/fld.1770
O. Soto, R. Löhner, On the Computation of Flow Sensitivities from Boundary Integrals, AIAA-2004-0112, 2004.
Ville, 2011, Convected level set method for the numerical simulation of fluid buckling, Internat. J. Numer. Methods Fluids, 66, 324, 10.1002/fld.2259
Coupez, 2015, Implicit boundary and adaptive anisotropic meshing, 1
Bonito, 2016, Numerical simulations of bouncing jets, Internat. J. Numer. Methods Fluids, 80, 53, 10.1002/fld.4071
Hachem, 2012, Immersed volume method for solving natural convection, conduction and radiation of a hat-shaped disk inside a 3D enclosure, Int. J. Numer. Methods Heat, 22, 718, 10.1108/09615531211244871
Hachem, 2013, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, Internat. J. Numer. Methods Engrg., 94, 805, 10.1002/nme.4481
Hachem, 2010, Stabilized finite element method for incompressible flows with high Reynolds number, J. Comput. Phys., 229, 8643, 10.1016/j.jcp.2010.07.030
Codina, 2002, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191, 4295, 10.1016/S0045-7825(02)00337-7
Tezduyar, 2000, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg., 190, 411, 10.1016/S0045-7825(00)00211-5
Codina, 2000, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg., 190, 1579, 10.1016/S0045-7825(00)00254-1
Codina, 1998, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 156, 185, 10.1016/S0045-7825(97)00206-5
Badia, 2006, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework, SIAM J. Numer. Anal., 44, 2159, 10.1137/050643532
Coupez, 2011, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, J. Comput. Phys., 230, 2391, 10.1016/j.jcp.2010.11.041
Jannoun, 2015, Anisotropic meshing with time-stepping control for unsteady convection-dominated problems, Appl. Math. Model., 39, 1899, 10.1016/j.apm.2014.10.005
Coupez, 2000, Génération de maillage et adaptation de maillage par optimisation locale, Rev. Eur. Elem. Finis, 9, 403
Coupez, 2013, Edge-based anisotropic mesh adaptation for CFD applications, 567
Meliga, 2009, Unsteadiness in the wake of disks and spheres: Instability, receptivity and control using direct and adjoint global stability analyses, J. Fluid Struct., 25, 601, 10.1016/j.jfluidstructs.2009.04.004
Balay, 2020
Mesri, 2005, Mesh partitioning for parallel computational fluid dynamics applications on a grid, 631
Digonnet, 2007, Cimlib: a fully parallel application for numerical simulations based on components assembly, 269
Digonnet, 2013, Massively parallel computation on anisotropic meshes, 199
Mesri, 2009, Advanced parallel computing in material forming with CIMLib, Eur. J. Comput. Mech., 18, 669, 10.3166/ejcm.18.669-694
Borrvall, 2003, Topology optimization of fluids in Stokes flow, Internat. J. Numer. Methods Fluids, 41, 77, 10.1002/fld.426
Duan, 2008, Shape-topology optimization for Navier–Stokes problem using variational level set method, J. Comput. Appl. Math., 222, 487, 10.1016/j.cam.2007.11.016
Gersborg-Hansen, 2005, Topology optimization of channel flow problems, Struct. Multidiscip. Optim., 30, 181, 10.1007/s00158-004-0508-7
Abdelwahed, 2009, Optimal shape design for fluid flow using topological perturbation technique, J. Math. Anal., 356, 548, 10.1016/j.jmaa.2009.02.045
Papadopoulos, 2021, Computing multiple solutions of topology optimization problems, SIAM J. Sci. Comput., 43, A1555, 10.1137/20M1326209
Pingen, 2010, A parametric level-set approach for topology optimization of flow domains, Struct. Multidiscip. Optim., 41, 117, 10.1007/s00158-009-0405-1
Boussinesq, 1868, Mémoire sur l’influence des frottements dans les mouvements réguliers des fluids, J. Math. Pures Appl., 13, 377