Large-scale parallel topology optimization of three-dimensional incompressible fluid flows in a level set, anisotropic mesh adaptation framework

W. Abdel Nour1, A. Larcher1, D. Serret2, P. Meliga1, E. Hachem1
1Mines Paris, PSL University, Centre for material forming (CEMEF), UMR CNRS, 06904 Sophia Antipolis, France
2TEMISTh SAS, Technocentre des Florides, 13700 Marignane, France

Tài liệu tham khảo

Bendsøe, 1988, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197, 10.1016/0045-7825(88)90086-2 Bendsøe, 2003 Alexandersen, 2020, A review of topology optimisation for fluid-based problems, Fluids, 5, 29, 10.3390/fluids5010029 Sigmund, 2013, Topology optimization approaches, Struct. Multidiscip. Optim., 48, 1031, 10.1007/s00158-013-0978-6 Suzuki, 1991, A homogenization method for shape and topology optimization, Comput. Methods Appl. Mech. Engrg., 93, 291, 10.1016/0045-7825(91)90245-2 Allaire, 1997, Shape optimization by the homogenization method, Numer. Math., 76, 27, 10.1007/s002110050253 Sethian, 2000, Structural boundary design via level set and immersed interface methods, J. Comput. Phys., 163, 489, 10.1006/jcph.2000.6581 Wang, 2003, A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 227, 10.1016/S0045-7825(02)00559-5 Allaire, 2004, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363, 10.1016/j.jcp.2003.09.032 Van Dijk, 2013, Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 437, 10.1007/s00158-013-0912-y Andreasen, 2020, Level set topology and shape optimization by density methods using cut elements with length scale control, Struct. Multidiscip. Optim., 62, 685, 10.1007/s00158-020-02527-1 Duan, 2015, Adaptive mesh method for topology optimization of fluid flow, Appl. Math. Lett., 44, 40, 10.1016/j.aml.2014.12.016 Jensen, 2018, Topology optimization of Stokes flow on dynamic meshes using simple optimizers, Comput. & Fluids, 174, 66, 10.1016/j.compfluid.2018.07.011 Duan, 2016, Optimality criteria coupled adaptive mesh method for optimal shape design of Stokes flow, Math. Methods Appl. Sci., 39, 3910, 10.1002/mma.3840 Duan, 2016, Topology optimization of incompressible Navier–Stokes problem by level set based adaptive mesh method, Comput. Math. Appl., 72, 1131, 10.1016/j.camwa.2016.06.034 Garcke, 2015, Numerical approximation of phase field based shape and topology optimization for fluids, SIAM J. Sci. Comput., 37, A1846, 10.1137/140969269 Feppon, 2019, Shape optimization of a coupled thermal fluid–structure problem in a level set mesh evolution framework, SeMA, 76, 413, 10.1007/s40324-018-00185-4 Feppon, 2020, Topology optimization of thermal fluid–structure systems using body-fitted meshes and parallel computing, J. Comput. Phys., 417, 10.1016/j.jcp.2020.109574 Feppon, 2021, Body-fitted topology optimization of 2D and 3D fluid-to-fluid heat exchangers, Comput. Methods Appl. Mech. Engrg., 376, 10.1016/j.cma.2020.113638 Talischi, 2014, Polygonal finite elements for incompressible fluid flow, Internat. J. Numer. Methods Fluids, 74, 134, 10.1002/fld.3843 Antonietti, 2017, On the virtual element method for topology optimization on polygonal meshes: a numerical study, Comput. Math. Appl., 74, 1091, 10.1016/j.camwa.2017.05.025 Suárez, 2022, On the virtual element method for topology optimization of non-Newtonian fluid-flow problems, Eng. Comput., 38, 5445, 10.1007/s00366-022-01637-2 Gain, 2015, Topology optimization using polytopes, Comput. Methods Appl. Mech. Engrg., 293, 411, 10.1016/j.cma.2015.05.007 Villanueva, 2017, CutFEM topology optimization of 3D laminar incompressible flow problems, Comput. Methods Appl. Mech. Engrg., 320, 444, 10.1016/j.cma.2017.03.007 Jensen, 2016, Solving stress and compliance constrained volume minimization using anisotropic mesh adaptation, the method of moving asymptotes and a global p-norm, Struct. Multidiscip. Optim., 54, 831, 10.1007/s00158-016-1439-9 Micheletti, 2019, Topology optimization driven by anisotropic mesh adaptation: Towards a free-form design, Comput. Struct., 214, 60, 10.1016/j.compstruc.2019.01.005 Borrvall, 2001, Large-scale topology optimization in 3D using parallel computing, Comput. Methods Appl. Mech. Engrg., 190, 6201, 10.1016/S0045-7825(01)00216-X Evgrafov, 2008, Large-scale parallel topology optimization using a dual-primal substructuring solver, Struct. Multidiscip. Optim., 36, 329, 10.1007/s00158-007-0190-7 Aage, 2013, Parallel framework for topology optimization using the method of moving asymptotes, Struct. Multidiscip. Optim., 47, 493, 10.1007/s00158-012-0869-2 Aage, 2015, Topology optimization using PETSc: An easy-to-use, fully parallel, open source topology optimization framework, Struct. Multidiscip. Optim., 51, 565, 10.1007/s00158-014-1157-0 Alexandersen, 2016, Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection, Int. J. Heat Mass Transfer, 100, 876, 10.1016/j.ijheatmasstransfer.2016.05.013 Othmer, 2008, A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows, Internat. J. Numer. Methods Fluids, 58, 861, 10.1002/fld.1770 O. Soto, R. Löhner, On the Computation of Flow Sensitivities from Boundary Integrals, AIAA-2004-0112, 2004. Ville, 2011, Convected level set method for the numerical simulation of fluid buckling, Internat. J. Numer. Methods Fluids, 66, 324, 10.1002/fld.2259 Coupez, 2015, Implicit boundary and adaptive anisotropic meshing, 1 Bonito, 2016, Numerical simulations of bouncing jets, Internat. J. Numer. Methods Fluids, 80, 53, 10.1002/fld.4071 Hachem, 2012, Immersed volume method for solving natural convection, conduction and radiation of a hat-shaped disk inside a 3D enclosure, Int. J. Numer. Methods Heat, 22, 718, 10.1108/09615531211244871 Hachem, 2013, Immersed stress method for fluid-structure interaction using anisotropic mesh adaptation, Internat. J. Numer. Methods Engrg., 94, 805, 10.1002/nme.4481 Hachem, 2010, Stabilized finite element method for incompressible flows with high Reynolds number, J. Comput. Phys., 229, 8643, 10.1016/j.jcp.2010.07.030 Codina, 2002, Stabilized finite element approximation of transient incompressible flows using orthogonal subscales, Comput. Methods Appl. Mech. Engrg., 191, 4295, 10.1016/S0045-7825(02)00337-7 Tezduyar, 2000, Finite element stabilization parameters computed from element matrices and vectors, Comput. Methods Appl. Mech. Engrg., 190, 411, 10.1016/S0045-7825(00)00211-5 Codina, 2000, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods, Comput. Methods Appl. Mech. Engrg., 190, 1579, 10.1016/S0045-7825(00)00254-1 Codina, 1998, Comparison of some finite element methods for solving the diffusion-convection-reaction equation, Comput. Methods Appl. Mech. Engrg., 156, 185, 10.1016/S0045-7825(97)00206-5 Badia, 2006, Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ALE framework, SIAM J. Numer. Anal., 44, 2159, 10.1137/050643532 Coupez, 2011, Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing, J. Comput. Phys., 230, 2391, 10.1016/j.jcp.2010.11.041 Jannoun, 2015, Anisotropic meshing with time-stepping control for unsteady convection-dominated problems, Appl. Math. Model., 39, 1899, 10.1016/j.apm.2014.10.005 Coupez, 2000, Génération de maillage et adaptation de maillage par optimisation locale, Rev. Eur. Elem. Finis, 9, 403 Coupez, 2013, Edge-based anisotropic mesh adaptation for CFD applications, 567 Meliga, 2009, Unsteadiness in the wake of disks and spheres: Instability, receptivity and control using direct and adjoint global stability analyses, J. Fluid Struct., 25, 601, 10.1016/j.jfluidstructs.2009.04.004 Balay, 2020 Mesri, 2005, Mesh partitioning for parallel computational fluid dynamics applications on a grid, 631 Digonnet, 2007, Cimlib: a fully parallel application for numerical simulations based on components assembly, 269 Digonnet, 2013, Massively parallel computation on anisotropic meshes, 199 Mesri, 2009, Advanced parallel computing in material forming with CIMLib, Eur. J. Comput. Mech., 18, 669, 10.3166/ejcm.18.669-694 Borrvall, 2003, Topology optimization of fluids in Stokes flow, Internat. J. Numer. Methods Fluids, 41, 77, 10.1002/fld.426 Duan, 2008, Shape-topology optimization for Navier–Stokes problem using variational level set method, J. Comput. Appl. Math., 222, 487, 10.1016/j.cam.2007.11.016 Gersborg-Hansen, 2005, Topology optimization of channel flow problems, Struct. Multidiscip. Optim., 30, 181, 10.1007/s00158-004-0508-7 Abdelwahed, 2009, Optimal shape design for fluid flow using topological perturbation technique, J. Math. Anal., 356, 548, 10.1016/j.jmaa.2009.02.045 Papadopoulos, 2021, Computing multiple solutions of topology optimization problems, SIAM J. Sci. Comput., 43, A1555, 10.1137/20M1326209 Pingen, 2010, A parametric level-set approach for topology optimization of flow domains, Struct. Multidiscip. Optim., 41, 117, 10.1007/s00158-009-0405-1 Boussinesq, 1868, Mémoire sur l’influence des frottements dans les mouvements réguliers des fluids, J. Math. Pures Appl., 13, 377