Large-scale bare Cu bonding by 10 μm-sized Cu–Ag composite paste in low temperature low pressure air conditions

Chuantong Chen1, Shuaijie Zhao1, Takuya Sekiguchi2, Katsuaki Suganuma1
1Flexible 3D System Integration Laboratory, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
2Central Research Center, TOPPAN Edge Inc., 1-2-6 Owada-cho, Hachioji-shi, Tokyo, Japan

Tài liệu tham khảo

Roccaforte, 2018, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectron. Eng., 187, 66, 10.1016/j.mee.2017.11.021 Chen, 2017, A review of SiC power module packaging: layout, material system and integration, CPSS Transactions on Power Electronics and Applications, 2, 170, 10.24295/CPSSTPEA.2017.00017 Zhang, 2019, Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules, IEEE Trans. Power Electron., 34, 1181, 10.1109/TPEL.2018.2834345 Millan, 2014, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., 29, 2155, 10.1109/TPEL.2013.2268900 Chin, 2010, A review on die attach materials for sic-Based high-temperature power devices, Metall. Mater. Trans. B, 41, 824, 10.1007/s11663-010-9365-5 Sakairi, 2018, Measurement methodology for accurate modeling of SiC MOSFET switching behavior over wide voltage and current ranges, IEEE Trans. Power Electron., 33, 7314, 10.1109/TPEL.2017.2764632 Navarro, 2014, Thermomechanical assessment of die-attach materials for wide bandgap semiconductor devices and harsh environment applications, IEEE Trans. Power Electron., 29, 2261, 10.1109/TPEL.2013.2279607 Paknejad, 2017, Review of silver nanoparticle based die attach materials for high power/temperature applications, Microelectron. Reliab., 70, 1, 10.1016/j.microrel.2017.01.010 Siow, 2012, Mechanical properties of nano-silver joints as die attach materials, J. Alloys Compd., 514, 6, 10.1016/j.jallcom.2011.10.092 Chen, 2019, Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size, Mater. Des., 162, 311, 10.1016/j.matdes.2018.11.062 Lv, 2023, Porosity effect on the mechanical properties of nano-silver solder, Nanotechnology, 34, 10.1088/1361-6528/acb4f3 Wang, 2022, Pressureless sintered-silver as die attachment for bonding Si and SiC Chips on silver, gold, copper, and nickel metallization for power electronics packaging: the practice and science, IEEE J EM SEL TOP P, 10, 2645 Chen, 2018, High temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates, J. Mater. Sci. Mater. Electron., 29, 1785, 10.1007/s10854-017-8087-8 Ogura, 2015, Effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste, Mater. Trans., 56, 1030, 10.2320/matertrans.MI201411 Heuck, 2012, Sintering of copper particles for die attach, IEEE Trans. Compon. Packag. Manuf., 2, 1587, 10.1109/TCPMT.2012.2201940 Liu, 2016, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging, Scripta Mater., 120, 80, 10.1016/j.scriptamat.2016.04.018 Bhogaraju, 2020, Novel approach to copper sintering using surface enhanced brass micro flakes for microelectronics packaging, J. Alloys Compd., 844, 10.1016/j.jallcom.2020.156043 Peng, 2020, Fabrication of high-strength Cu–Cu joint by low-temperature sintering micron–nano Cu composite paste, J. Mater. Sci. Mater. Electron., 31, 8456, 10.1007/s10854-020-03380-0 Hsiao, 2017, Development of Cu-Ag pastes for high temperature sustainable bonding, Mater. Sci. Eng., 684, 500, 10.1016/j.msea.2016.12.084 Lee, 2018, Characterization of novel high-speed die attachment method at 225°C using submicrometer Ag-coated Cu particles, Scripta Mater., 150, 7, 10.1016/j.scriptamat.2018.02.029 Li, 2017, Depressing of Cu-Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles, J. Alloys Compd., 709, 700, 10.1016/j.jallcom.2017.03.220 Yang, 2021, Towards understanding the facile synthesis of well-covered Cu-Ag core-shell nanoparticles from a complexing model, J. Alloys Compd., 874, 10.1016/j.jallcom.2021.159900 Lv, 2023, Fabrication and sintering behavior of nano Cu–Ag composite paste for high-power device, IEEE Trans. Electron. Dev., 70, 3202, 10.1109/TED.2023.3268252 Zhang, 2022, Development of anti-oxidation Ag salt paste for large-area (35× 35 mm2) Cu-Cu bonding with ultra-high bonding strength, J. Mater. Sci. Technol., 113, 261, 10.1016/j.jmst.2021.08.095 Chen, 2018, Bonding technology based on solid porous Ag for large area chips, Scripta Mater., 145, 123, 10.1016/j.scriptamat.2017.11.035 Chen, 2023, Development of micron-sized Cu–Ag composite paste for oxidation-free bare Cu bonding in air condition and its deterioration mechanism during aging and power cycling tests, J. Mater. Res. Technol., 24, 8967, 10.1016/j.jmrt.2023.05.104 Gao, 2018, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere, Mater. Des., 160, 1265, 10.1016/j.matdes.2018.11.003 Li, 2017, Printable and flexible copper–silver alloy electrodes with high conductivity and ultrahigh oxidation resistance, ACS Appl. Mater. Interfaces, 9, 24711, 10.1021/acsami.7b05308 Li, 2017, Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement, J. Mater. Chem. C, 5, 1155, 10.1039/C6TC04892G Zhang, 2019, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air, J. Alloys Compd., 780, 435, 10.1016/j.jallcom.2018.11.251 Kim, 2021, Die sinter bonding in air using Cu@Ag particulate preform and rapid formation of near-full density bondline, J. Mater. Res. Technol., 14, 1724, 10.1016/j.jmrt.2021.07.059 Liu, 2020, Facile preparation of Cu-Ag micro-nano composite paste for high power device packaging, Electron. Compon. C, 755 Chen, 2021, Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints, J. Alloys Compd., 866, 10.1016/j.jallcom.2021.158783 Yang, 2021, Synthesis of highly antioxidant and low-temperature sintering Cu-Ag core-shell submicro-particles for high-power density electronic packaging, Mater. Lett., 299, 10.1016/j.matlet.2021.129781 Tu, 2020, Multiscale characterization of the joint bonded by Cu@Ag Core@Shell nanoparticles, Appl. Phys. Lett., 116, 10.1063/5.0007534 Kim, 2020, Pressure-Assisted sinter-bonding characteristics at 250 degrees C in air using bimodal Ag-coated Cu particles, Electron. Mater. Lett., 16, 293, 10.1007/s13391-020-00208-1 Choi, 2021, Pressure-assisted sinter bonding method at 300° C in air using a resin-free paste containing 1.5 μm Cu@ Ag particles, Appl. Surf. Sci., 546, 10.1016/j.apsusc.2021.149156 Morisada, 2010, A low-temperature bonding process using mixed Cu–Ag nanoparticles, J. Electron. Mater., 39, 1283, 10.1007/s11664-010-1195-3 Cheng, 2017, A review of lead-free solders for electronics applications, Microelectron. Reliab., 75, 77, 10.1016/j.microrel.2017.06.016 Kim, 2021, Online thermal resistance and reliability characteristic monitoring of power modules with Ag sinter joining and Pb, Pb-free solders during power cycling test by SiC TEG chip, IEEE Trans. Power Electron., 36, 4977, 10.1109/TPEL.2020.3031670 Chellaih, 2007, Effect of thermal contact heat transfer on solidification of Pb–Sn and Pb-free solders, Mater. Des., 28, 1006, 10.1016/j.matdes.2005.11.011 Li, 2021, Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials, Compos. Sci. Technol., 212, 10.1016/j.compscitech.2021.108883 Zhang, 2019, A brief review on high-temperature, Pb-free die-attach materials, J. Electron. Mater., 48, 201, 10.1007/s11664-018-6707-6 Cai, 2022, Effect of TIM deterioration on monitoring of IGBT module thermal resistance and its compensation strategy, IEEE T Comp Pack Man, 12, 789 Yokoyama, 2016, Green synthesis of Cu micro/nanoparticles for low-resistivity Cu thin films using ascorbic acid in aqueous solution, J. Mater. Chem. C, 4, 7494, 10.1039/C6TC02280D Gao, 2019, Effect of substrates on fracture mechanism and process optimization of oxidation–reduction bonding with copper microparticles, J. Electron. Mater., 48, 2263, 10.1007/s11664-019-07046-4 Yao, 2016, Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces revisited, Surf. Sci., 646, 37, 10.1016/j.susc.2015.06.007 Tomotoshi, 2020, Surface and interface designs in copper-Based conductive inks for printed/flexible electronics, Nanomaterials, 10, 1689, 10.3390/nano10091689