Large-scale bare Cu bonding by 10 μm-sized Cu–Ag composite paste in low temperature low pressure air conditions
Tài liệu tham khảo
Roccaforte, 2018, Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectron. Eng., 187, 66, 10.1016/j.mee.2017.11.021
Chen, 2017, A review of SiC power module packaging: layout, material system and integration, CPSS Transactions on Power Electronics and Applications, 2, 170, 10.24295/CPSSTPEA.2017.00017
Zhang, 2019, Performance evaluation of high-power SiC MOSFET modules in comparison to Si IGBT modules, IEEE Trans. Power Electron., 34, 1181, 10.1109/TPEL.2018.2834345
Millan, 2014, A survey of wide bandgap power semiconductor devices, IEEE Trans. Power Electron., 29, 2155, 10.1109/TPEL.2013.2268900
Chin, 2010, A review on die attach materials for sic-Based high-temperature power devices, Metall. Mater. Trans. B, 41, 824, 10.1007/s11663-010-9365-5
Sakairi, 2018, Measurement methodology for accurate modeling of SiC MOSFET switching behavior over wide voltage and current ranges, IEEE Trans. Power Electron., 33, 7314, 10.1109/TPEL.2017.2764632
Navarro, 2014, Thermomechanical assessment of die-attach materials for wide bandgap semiconductor devices and harsh environment applications, IEEE Trans. Power Electron., 29, 2261, 10.1109/TPEL.2013.2279607
Paknejad, 2017, Review of silver nanoparticle based die attach materials for high power/temperature applications, Microelectron. Reliab., 70, 1, 10.1016/j.microrel.2017.01.010
Siow, 2012, Mechanical properties of nano-silver joints as die attach materials, J. Alloys Compd., 514, 6, 10.1016/j.jallcom.2011.10.092
Chen, 2019, Microstructure and mechanical properties of sintered Ag particles with flake and spherical shape from nano to micro size, Mater. Des., 162, 311, 10.1016/j.matdes.2018.11.062
Lv, 2023, Porosity effect on the mechanical properties of nano-silver solder, Nanotechnology, 34, 10.1088/1361-6528/acb4f3
Wang, 2022, Pressureless sintered-silver as die attachment for bonding Si and SiC Chips on silver, gold, copper, and nickel metallization for power electronics packaging: the practice and science, IEEE J EM SEL TOP P, 10, 2645
Chen, 2018, High temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates, J. Mater. Sci. Mater. Electron., 29, 1785, 10.1007/s10854-017-8087-8
Ogura, 2015, Effects of reducing solvent on copper, nickel, and aluminum joining using silver nanoparticles derived from a silver oxide paste, Mater. Trans., 56, 1030, 10.2320/matertrans.MI201411
Heuck, 2012, Sintering of copper particles for die attach, IEEE Trans. Compon. Packag. Manuf., 2, 1587, 10.1109/TCPMT.2012.2201940
Liu, 2016, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging, Scripta Mater., 120, 80, 10.1016/j.scriptamat.2016.04.018
Bhogaraju, 2020, Novel approach to copper sintering using surface enhanced brass micro flakes for microelectronics packaging, J. Alloys Compd., 844, 10.1016/j.jallcom.2020.156043
Peng, 2020, Fabrication of high-strength Cu–Cu joint by low-temperature sintering micron–nano Cu composite paste, J. Mater. Sci. Mater. Electron., 31, 8456, 10.1007/s10854-020-03380-0
Hsiao, 2017, Development of Cu-Ag pastes for high temperature sustainable bonding, Mater. Sci. Eng., 684, 500, 10.1016/j.msea.2016.12.084
Lee, 2018, Characterization of novel high-speed die attachment method at 225°C using submicrometer Ag-coated Cu particles, Scripta Mater., 150, 7, 10.1016/j.scriptamat.2018.02.029
Li, 2017, Depressing of Cu-Cu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles, J. Alloys Compd., 709, 700, 10.1016/j.jallcom.2017.03.220
Yang, 2021, Towards understanding the facile synthesis of well-covered Cu-Ag core-shell nanoparticles from a complexing model, J. Alloys Compd., 874, 10.1016/j.jallcom.2021.159900
Lv, 2023, Fabrication and sintering behavior of nano Cu–Ag composite paste for high-power device, IEEE Trans. Electron. Dev., 70, 3202, 10.1109/TED.2023.3268252
Zhang, 2022, Development of anti-oxidation Ag salt paste for large-area (35× 35 mm2) Cu-Cu bonding with ultra-high bonding strength, J. Mater. Sci. Technol., 113, 261, 10.1016/j.jmst.2021.08.095
Chen, 2018, Bonding technology based on solid porous Ag for large area chips, Scripta Mater., 145, 123, 10.1016/j.scriptamat.2017.11.035
Chen, 2023, Development of micron-sized Cu–Ag composite paste for oxidation-free bare Cu bonding in air condition and its deterioration mechanism during aging and power cycling tests, J. Mater. Res. Technol., 24, 8967, 10.1016/j.jmrt.2023.05.104
Gao, 2018, Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere, Mater. Des., 160, 1265, 10.1016/j.matdes.2018.11.003
Li, 2017, Printable and flexible copper–silver alloy electrodes with high conductivity and ultrahigh oxidation resistance, ACS Appl. Mater. Interfaces, 9, 24711, 10.1021/acsami.7b05308
Li, 2017, Highly reliable and highly conductive submicron Cu particle patterns fabricated by low temperature heat-welding and subsequent flash light sinter-reinforcement, J. Mater. Chem. C, 5, 1155, 10.1039/C6TC04892G
Zhang, 2019, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air, J. Alloys Compd., 780, 435, 10.1016/j.jallcom.2018.11.251
Kim, 2021, Die sinter bonding in air using Cu@Ag particulate preform and rapid formation of near-full density bondline, J. Mater. Res. Technol., 14, 1724, 10.1016/j.jmrt.2021.07.059
Liu, 2020, Facile preparation of Cu-Ag micro-nano composite paste for high power device packaging, Electron. Compon. C, 755
Chen, 2021, Comparing the mechanical and thermal-electrical properties of sintered copper (Cu) and sintered silver (Ag) joints, J. Alloys Compd., 866, 10.1016/j.jallcom.2021.158783
Yang, 2021, Synthesis of highly antioxidant and low-temperature sintering Cu-Ag core-shell submicro-particles for high-power density electronic packaging, Mater. Lett., 299, 10.1016/j.matlet.2021.129781
Tu, 2020, Multiscale characterization of the joint bonded by Cu@Ag Core@Shell nanoparticles, Appl. Phys. Lett., 116, 10.1063/5.0007534
Kim, 2020, Pressure-Assisted sinter-bonding characteristics at 250 degrees C in air using bimodal Ag-coated Cu particles, Electron. Mater. Lett., 16, 293, 10.1007/s13391-020-00208-1
Choi, 2021, Pressure-assisted sinter bonding method at 300° C in air using a resin-free paste containing 1.5 μm Cu@ Ag particles, Appl. Surf. Sci., 546, 10.1016/j.apsusc.2021.149156
Morisada, 2010, A low-temperature bonding process using mixed Cu–Ag nanoparticles, J. Electron. Mater., 39, 1283, 10.1007/s11664-010-1195-3
Cheng, 2017, A review of lead-free solders for electronics applications, Microelectron. Reliab., 75, 77, 10.1016/j.microrel.2017.06.016
Kim, 2021, Online thermal resistance and reliability characteristic monitoring of power modules with Ag sinter joining and Pb, Pb-free solders during power cycling test by SiC TEG chip, IEEE Trans. Power Electron., 36, 4977, 10.1109/TPEL.2020.3031670
Chellaih, 2007, Effect of thermal contact heat transfer on solidification of Pb–Sn and Pb-free solders, Mater. Des., 28, 1006, 10.1016/j.matdes.2005.11.011
Li, 2021, Synergistic effect of carbon fiber and graphite on reducing thermal resistance of thermal interface materials, Compos. Sci. Technol., 212, 10.1016/j.compscitech.2021.108883
Zhang, 2019, A brief review on high-temperature, Pb-free die-attach materials, J. Electron. Mater., 48, 201, 10.1007/s11664-018-6707-6
Cai, 2022, Effect of TIM deterioration on monitoring of IGBT module thermal resistance and its compensation strategy, IEEE T Comp Pack Man, 12, 789
Yokoyama, 2016, Green synthesis of Cu micro/nanoparticles for low-resistivity Cu thin films using ascorbic acid in aqueous solution, J. Mater. Chem. C, 4, 7494, 10.1039/C6TC02280D
Gao, 2019, Effect of substrates on fracture mechanism and process optimization of oxidation–reduction bonding with copper microparticles, J. Electron. Mater., 48, 2263, 10.1007/s11664-019-07046-4
Yao, 2016, Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu(110) single-crystal surfaces revisited, Surf. Sci., 646, 37, 10.1016/j.susc.2015.06.007
Tomotoshi, 2020, Surface and interface designs in copper-Based conductive inks for printed/flexible electronics, Nanomaterials, 10, 1689, 10.3390/nano10091689