Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects

Energy and Environmental Science - Tập 10 Số 9 - Trang 2030-2040
Liangwei Fu1,2,3,4,5, Maosheng Yin1,2,3,4,5, Di Wu1,4,5,6, Wei Li1,4,5,6, Dan Feng1,4,5,6, Li Huang1,4,5,6, Jiaqing He1,4,5,6
1China
2School of Physics and Technology
3School of Physics and Technology, Wuhan University, Wuhan 430072, China
4Shenzhen
5Shenzhen Key Laboratory for Thermoelectric Materials and Department of Physics, Southern University of Science and Technology, Shenzhen, China
6Southern University of Science and Technology

Tóm tắt

Dual-site point defects formed through partially dissolved Sb nanophases contribute to distortion of density-of-states and enhancement of phonon scattering.

Từ khóa


Tài liệu tham khảo

Zhao, 2014, Nature, 508, 373, 10.1038/nature13184

Wu, 2016, Adv. Mater., 28, 2737, 10.1002/adma.201505638

Biswas, 2012, Nature, 489, 414, 10.1038/nature11439

Pei, 2014, J. Am. Chem. Soc., 136, 13902, 10.1021/ja507945h

Pei, 2011, Nature, 473, 66, 10.1038/nature09996

Wu, 2014, Nat. Commun., 5, 4515, 10.1038/ncomms5515

Wu, 2015, Energy Environ. Sci., 8, 2056, 10.1039/C5EE01147G

Pei, 2017, Adv. Energy Mater., 7, 1601450, 10.1002/aenm.201601450

Poudel, 2008, Science, 320, 634, 10.1126/science.1156446

Pei, 2011, Adv. Funct. Mater., 21, 241, 10.1002/adfm.201000878

Fu, 2015, J. Mater. Chem. A, 3, 1010, 10.1039/C4TA05083E

Fu, 2015, Nat. Commun., 6, 8144, 10.1038/ncomms9144

Tan, 2017, Adv. Energy Mater., 1700099, 10.1002/aenm.201700099

Heremans, 2004, Phys. Rev. B: Condens. Matter Mater. Phys., 70, 115334, 10.1103/PhysRevB.70.115334

Nishio, 1997, Jpn. J. Appl. Phys., 36, 170, 10.1143/JJAP.36.170

Heremans, 2008, Science, 321, 554, 10.1126/science.1159725

Zhang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 13261, 10.1073/pnas.1305735110

Jaworski, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 233201, 10.1103/PhysRevB.80.233201

Zhang, 2012, Energy Environ. Sci., 5, 5246, 10.1039/C1EE02465E

Androulakis, 2007, J. Am. Chem. Soc., 129, 9780, 10.1021/ja071875h

Kim, 2016, ACS Nano, 10, 7197, 10.1021/acsnano.6b03696

Sootsman, 2006, Chem. Mater., 18, 4993, 10.1021/cm0612090

Zhao, 2014, Energy Environ. Sci., 7, 251, 10.1039/C3EE43099E

Pei, 2012, Adv. Mater., 24, 6125, 10.1002/adma.201202919

Pei, 2012, Adv. Energy Mater., 2, 670, 10.1002/aenm.201100770

He, 2013, J. Am. Chem. Soc., 135, 4624, 10.1021/ja312562d

He, 2010, J. Am. Chem. Soc., 132, 8669, 10.1021/ja1010948

Abrikosov, 1969, Inorg. Mater., 5, 630

He, 2011, J. Am. Chem. Soc., 133, 8786, 10.1021/ja2006498

LaLonde, 2011, Energy Environ. Sci., 4, 2090, 10.1039/c1ee01314a

Jaworski, 2009, Phys. Rev. B: Condens. Matter Mater. Phys., 80, 125208, 10.1103/PhysRevB.80.125208

Aminorroaya Yamini, 2014, ACS Appl. Mater. Interfaces, 6, 11476, 10.1021/am502140h

Faleev, 2008, Phys. Rev. B: Condens. Matter Mater. Phys., 77, 214304, 10.1103/PhysRevB.77.214304

Rose, 1983, Solid State Commun., 45, 859, 10.1016/0038-1098(83)90816-5

Zayachuk, 1997, Semiconductors, 31, 173, 10.1134/1.1187322

Medeiros, 2014, Phys. Rev. B: Condens. Matter Mater. Phys., 89, 041407, 10.1103/PhysRevB.89.041407

Medeiros, 2015, Phys. Rev. B: Condens. Matter Mater. Phys., 91, 041116, 10.1103/PhysRevB.91.041116

Liu, 2015, Acta Mater., 87, 357, 10.1016/j.actamat.2014.12.042

Lo, 2012, Adv. Funct. Mater., 22, 5175, 10.1002/adfm.201201221