Large-Time Behavior for Compressible Navier–Stokes–Fourier System in the Whole Space
Tóm tắt
The current paper is devoted to the investigation of large-time behavior of the compressible Navier–Stokes–Fourier system in the whole space. Under the condition that
$$\Vert \rho \Vert _{C^\alpha } $$
and
$$\Vert \rho , T\Vert _{L^\infty }$$
possess uniform in time bound, we prove that the regular solutions converge to equilibrium with the optimal decay rate.
Tài liệu tham khảo
Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Fundamental Principles of Mathematical Sciences, vol. 343. Springer, Heidelberg (2011)
Charve, F., Danchin, R.: A global existence result for the compressible Navier–Stokes equations in the critical \(L^p\) framework. Arch. Ration. Mech. Anal. 198, 233–271 (2010)
Chen, Q., Miao, C., Zhang, Z.: Global well-posedness for compressible Navier–Stokes equations with highly oscillating initial velocity. Commun. Pure Appl. Math. 63(9), 1173–1224 (2010)
Chen, Q., Miao, C., Zhang, Z.: Well-posedness in critical spaces for the compressible Navier–Stokes equations with density dependent viscosities. Rev. Mat. Iberoam. 26(3), 915–946 (2010)
Chen, Q., Miao, C., Zhang, Z.: On the ill-posedness of the compressible Navier–Stokes equation in the critical Besov spaces. Rev. Mat. Iberoam. 31(4), 1375–1402 (2015)
Danchin, R.: Global existence in critical spaces for compressible Navier–Stokes equations. Invent. Math. 141, 579–614 (2000)
Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases. Commun. Partial Differ. Equ. 26, 1183–1233 (2001)
Danchin, R.: Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 160, 1–39 (2001)
Danchin, R.: On the uniqueness in critical spaces for compressible Navier–Stokes equations. Nonlinear Differ. Equ. Appl. 12, 111–128 (2005)
Danchin, R., Xu, J.: Optimal decay estimates in the critical \(L^p\) framework for flows of compressible viscous and heat-conductive gases. Arch. Ration. Mech. Anal. 224, 53–90 (2017)
Fang, D., Zhang, T., Zi, R.: Decay estimates for isentropic compressible Navier–Stokes equations in bounded domain. J. Math. Anal. Appl. 386(2), 939–947 (2012)
He, L., Huang, J., Wang, C.: Global stability of large solutions to the 3D compressible Navier–Stokes equations. Arch. Ration. Mech. Anal. 234, 1167–1222 (2019)
Hoff, D.: Global solutions of the Navier–Stokes equations for multidimensional compressible flow with discontinuous initial data. J. Differ. Equ. 120, 215–254 (1995)
Hoff, D.: Discontinuous solutions of the Navier–Stokes equations for multidimensional flows of heat-conducting fluids. Arch. Rational Mech. Anal. 139, 303–354 (1997)
Huang, X., Li, J.: Global classical and weak solutions to the three-dimensional full compressible Navier–Stokes system with vacuum and large oscillations. Arch. Ration. Mech. Anal. 227, 995–1059 (2018)
Kagei, Y., Kobayashi, T.: On large time behavior of solutions to the compressible Navier–Stokes equations in the half space in \({{\mathbb{R}}}^3\). Arch. Ration. Mech. Anal. 165, 89–159 (2002)
Kagei, Y., Kobayashi, T.: Asymptotic behavior of solutions of the compressible Navier–Stokes equations on the half space. Arch. Ration. Mech. Anal. 177, 231–330 (2005)
Kobayashi, T.: Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in \({{\mathbb{R}}}^3\). J. Differ. Equ. 184, 587–619 (2002)
Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain of \({{\mathbb{R}}}^3\). Commun. Math. Phys. 200, 621–659 (1999)
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad. Ser. A Math. Sci. 55, 337–342 (1979)
Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)
Serre, D.: Sur l‘équation monodimensionnelle d‘un fluide visqueux, compressible et conducteur de chaleur. C.R. Acad. Sc. Paris 303, 703–706 (1986)
Serre, D.: Variations de grande amplitude pour la densité d’un fluide visqueux compressible. Physics D 48, 113–128 (1991)
Sun, Y., Wang, C., Zhang, Z.: A Beale–Kato–Majda blow-up criterion for the 3-D compressible Navier–Stokes equations. J. Math. Pure Appl. 95, 36–47 (2011)
Sun, Y., Wang, C., Zhang, Z.: A Beale–Kato–Majda criterion for three dimensional compressible viscous heat-conductive flows. Arch. Ration. Mech. Anal. 201, 727–742 (2011)
Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202(950) (2009)
Wen, H., Zhu, C.: Blow-up criterions of strong solutions to 3D compressible Navier–Stokes equations with vacuum. Adv. Math. 248, 534–572 (2013)
Zhang, Z., Zi, R.: Convergence to equilibrium for the solution of the full compressible Navier–Stokes equations. Ann. Inst. H. Poincaré Anal. Non Lineairé 37, 457–488 (2020)