Large Scale Simulation of Protein Mechanics and Function
Tài liệu tham khảo
Abrahams, 1994, Structure at 2.8-Å resolution of F1-ATPase from bovine heart mitochondria, Nature, 370, 621, 10.1038/370621a0
Agre, 1998, The aquaporins, blueprints for cellular plumbing systems, J. Biol. Chem., 273, 14659, 10.1074/jbc.273.24.14659
Agre, 1997, Aquaporins and ion conductance, Science, 275, 1490, 10.1126/science.275.5305.1490
Aksimentiev, 2003, Exploring protein motors on multiple time scales: F0 ATP synthase, Submitted
Ban, 1999, Placement of protein and rna structures into a 5 Å-resolution map of the 50S ribosomal subunit, Nature, 400, 841, 10.1038/23641
Baneyx, 2002, Supramolecular chemistry and self-assembly special feature: fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension, Proc. Nat. Acad. Sci. USA, 99, 5139, 10.1073/pnas.072650799
Baudry, 2001, Molecular dynamics study of bacteriorhodopsin and the purple membrane, J. Phys. Chem. B,, 105, 905, 10.1021/jp000898e
Bayas, 2003, Simulations of the forced detachment of the CD2-CD58 complex, Biophys. J., 84, 2223, 10.1016/S0006-3495(03)75028-0
Birkenhager, 1995, The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy, Eur. J. Biochem., 230, 58, 10.1111/j.1432-1033.1995.0058i.x
Bishop, 1997, How hormone receptor–DNA binding affects nucleosomal DNA: The role of symmetry, Biophys J., 72, 2056, 10.1016/S0006-3495(97)78849-0
Böckmann, 2002, Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase, Nat. Struct. Biol., 9, 198
Borgnia, 1999, Cellular and molecular biology of the aquaporin water channels, Annu. Rev. Biochem., 68, 425, 10.1146/annurev.biochem.68.1.425
Borgnia, 2001, Reconstitution and functional comparison of purified G1pF and AqpZ, the glycerol and water channels from Escherichia coli, Proc. Nat. Acad. Sci. USA, 98, 2888, 10.1073/pnas.051628098
Borgnia, 1999, Functional reconstitution and characterization of AqpZ, the E-coli water channel protein, J. Mol. Biol., 291, 1169, 10.1006/jmbi.1999.3032
Boyer, 2000, Catalytic site forms and controls in ATP synthase catalysis, Biochim. Biophys. Acta Bioenerg., 1458(2–3), 252, 10.1016/S0005-2728(00)00077-3
Brewer, 1999, The formation and dynamics of proton wires in channel environments, Biophys. J., 80(4), 1691
Brooks, 1983, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, J. Comput. Chem., 4, 187, 10.1002/jcc.540040211
Brünger, 1992
Capaldi, 2002, Mechanism of F1F0-type ATP synthase, a biological rotary motor, Trends Biochem. Sci., 27, 154, 10.1016/S0968-0004(01)02051-5
Cherepanov, 1999, Transient accumulation of elastic energy in proton translocating ATP synthase, FEBS Letters., 449, 1, 10.1016/S0014-5793(99)00386-5
Clemons, 1999, Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution, Nature, 400, 833, 10.1038/23631
Craig, 2001, Comparison of the early stages of forced unfolding of fibronectin type III modules, Proc. Nat. Acad. Sci. USA, 98, 5590, 10.1073/pnas.101582198
Damjanović, 2002, Excitons in a photosynthetic light-harvesting system: A combined molecular dynamics, quantum chemistry and polaron model study, Phys. Rev. E., 65, 031919, 10.1103/PhysRevE.65.031919
Damjanović, 2002, Excitation transfer in the peridinin-chlorophyll-protein of Amphidinium carterae, Biophys. J., 79, 1695, 10.1016/S0006-3495(00)76422-8
Darden, 1993, Particle mesh Ewald. An N⋯log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397
de Groot, 2001, A refined structure of human aquaporin-1, FEBS Letters, 504, 206, 10.1016/S0014-5793(01)02743-0
de Groot, 2001, Water permeation across biological membranes: Mechanism and dynamics of aquaporin-1 and GlpF, Science, 294, 2353, 10.1126/science.1062459
de Groot, 2000, The fold of human aquaporin 1, J. Mol. Biol., 300, 987, 10.1006/jmbi.2000.3913
Deen, 1998, Epithelial aquaporins, Curr. Opin. Cell Biol., 10(4), 435, 10.1016/S0955-0674(98)80055-0
Dmitriev, 1999, Structure of the subunit c oligomer in the F1F0 ATP synthase: Model derived from solution structure of the monomer and cross-linking in the native enzyme, Proc. Nat. Acad. Sci. USA, 96, 7785, 10.1073/pnas.96.14.7785
Dunn, 2000, The b subunit of Escherichia coli ATP synthase, J. Bioenerg. Biomembr, 32, 347, 10.1023/A:1005571818730
Elston, 1998, Energy transduction in ATP synthase, Nature, 391, 510, 10.1038/35185
Erickson, 1994, Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin, Proc. Nat. Acad. Sci. USA, 91, 10114, 10.1073/pnas.91.21.10114
Fillingame, 1997, Coupling H+ transport and ATP synthesis in F1F0-atp synthases: Glimpses of interacting parts in a dynamic molecular machine, J. Exp. Biol., 200, 217, 10.1242/jeb.200.2.217
Fillingame, 2002, Coupling proton movements to c-ring rotation in F1F0 ATP synthase: aqueous access channels and helix rotations at the a-c interface, Biochim. Biophys. Acta Bioenerg., 1555, 29, 10.1016/S0005-2728(02)00250-5
Fillingame, 2000, Coupling H+ transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor, J. Exp. Biol., 203, 9, 10.1242/jeb.203.1.9
Fillingame, 2000, Structural interpretation of F0 rotary function in the Escherichia coli F1F0 ATP synthase, Biochim. Biophys. Acta, 1458, 387, 10.1016/S0005-2728(00)00089-X
Fu, 2000, Structure of a glycerol conducting channel and the basis for its selectivity, Science, 290, 481, 10.1126/science.290.5491.481
Futai, 2000, Synthase (H+ ATPase): Coupling between catalysis, mechanical work, and proton translocation, Biochim. Biophys. Acta Bioenerg., 1458, 276, 10.1016/S0005-2728(00)00080-3
Gao, 2002, Identifying unfolding intermediates of FN-III10 by steered molecular dynamics, J. Mol. Biol., 323, 939, 10.1016/S0022-2836(02)01001-X
Gao, 2002, Unfolding of titin domains studied by molecular dynamics simulations, J. Muscle Res. Cell Motil, 23, 513, 10.1023/A:1023466608163
Geiger, 2002, Transmembrane crosstalk between the extracellular matrix and the cytoskeleton, Nat. Rev. Mol. Cell. Biol., 2, 793, 10.1038/35099066
Gibbons, 2000, The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution, Nat. Struct. Biol., 7, 1055, 10.1038/80981
Girvin, 1998, Solution structure of the transmembrane H+-transporting subunit c of the F1F0 ATP synthase, Biochem., 37, 8817, 10.1021/bi980511m
Gnatt, 2001, Structural basis of transcription: an RNA pplymerase II elongation complex at 3.3 Å resolution, Science, 5523, 1876, 10.1126/science.1059495
Grayson, 2003, Mechanisms of selectivity in channels and enzymes studied with interactive molecular dynamics, Biophys. J, 10.1016/S0006-3495(03)74452-X
Groth, 2000, Molecular models of structural arrangement of subunits and the mechanism of proton translocation in the membrane domain, Biochim. Biophys. Acta, 1458, 417, 10.1016/S0005-2728(00)00091-8
d. Grotthuss, 1806, Ann. Chim., LVIII, 54
Gullingsrud, 2001, Structural determinants of MscL gating studied by molecular dynamics simulations, Biophys. J., 80, 2074, 10.1016/S0006-3495(01)76181-4
Heller, 1993, Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal-phases, J. Phys. Chem., 97, 8343, 10.1021/j100133a034
Heller, 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol, 144, 274, 10.1128/JB.144.1.274-278.1980
Hermolin, 1983, Topology, organization, and function of the psi subunit in the f0 sector of the H+-ATPase of escherichia coli, J. Biol. Chem., 258, 14550, 10.1016/S0021-9258(17)43898-1
Heynmann, 1999, Aquaporins: Phylogeny, structure, and physiology of water channels, News in Physiol. Sci., 14, 187
Hirono-Hara, 2001, Pause and rotation of F1-ATPase during catalysis, Proc. Nat. Acad. Sci. USA, 98, 13649, 10.1073/pnas.241365698
Hummer, 2001, Water conduction through the hydrophobic channel of a carbon nanotube, Nature, 414, 188, 10.1038/35102535
Humphrey, 1996, VMD – Visual Molecular Dynamics, J. Mol. Graph., 14, 33, 10.1016/0263-7855(96)00018-5
Hynes, 1990
Isralewitz, 2001, Steered molecular dynamics investigations of protein function, J. Mol. Graph. Model., 19, 13, 10.1016/S1093-3263(00)00133-9
Isralewitz, 2001, Steered molecular dynamics and mechanical functions of proteins, Curr. Opin. Struct. Biol., 11, 224, 10.1016/S0959-440X(00)00194-9
Izrailev, 1999, Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex, Biophys. J., 77, 1753, 10.1016/S0006-3495(99)77022-0
Izrailev, 1998, Steered molecular dynamics, Vol. 4, 39
Jarzynski, 1997, Equilibrium free-energy differences from nonequilibrium measurements: a master equation approach, Phys. Rev. E., 56, 5018, 10.1103/PhysRevE.56.5018
Jarzynski, 1997, Nonequilibrium equality for free energy differences, Phys. Rev. Lett., 78, 2690, 10.1103/PhysRevLett.78.2690
Jensen, 2002, Energetics of glycerol conduction through aquaglyceroporin GlpF, Proc. Nat. Acad. Sci. USA, 99, 6731, 10.1073/pnas.102649299
Jensen, 2001, The mechanism of glycerol conduction in aquaglyceroporins, Structure, 9, 1083, 10.1016/S0969-2126(01)00668-2
Jiang, 2001, The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10, Proc. Nat. Acad. Sci. USA, 98, 4966, 10.1073/pnas.081424898
Jones, 1998, Genetic fusion of subunit c in the F0 sector of H+-transporting ATP synthase, J. Biol. Chem., 273, 29701, 10.1074/jbc.273.45.29701
Jones, 1998, Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the Escherichia coli F1F0 ATP synthase, J. Biol. Chem., 273, 17178, 10.1074/jbc.273.27.17178
Mackerell, 1998, 271
Jung, 1994, Molecular structure of the water channel through aquaporin CHIP – the hourglass model, J. Biol. Chem., 269, 14648, 10.1016/S0021-9258(17)36674-7
Junge, 1997, Atp synthase: An electrochemical transducer with rotary mechanics, Trends Biochem. Sci., 22, 420, 10.1016/S0968-0004(97)01129-8
Junge, 2001, Inter-subunit rotation and elastic power transmission in F0F1-ATPase, FEBS Letters, 504, 152, 10.1016/S0014-5793(01)02745-4
Kagawa, 2000, The α⧸β interfaces of α1β1, α3β3, and F1: domain motions and elastic energy stored during γ rotation, J. Bioenerg. Biomembr., 32, 471, 10.1023/A:1005612923995
Kalé, 1999, NAMD2: Greater scalability for parallel molecular dynamics, J. Comput. Phys., 151, 283, 10.1006/jcph.1999.6201
Kalé, 1996, Charm++: Parallel programming with message-driven objects, 175
Kato-Yamada, 1998, Direct observation of the rotation of ϵ subunit in f1-atpase, J. Biol. Chem., 273, 19375, 10.1074/jbc.273.31.19375
Kinosita, 2000, A rotary molecular motor that can work at near 100% efficiency, Phil. Trans. Roy. Soc. B, 355, 473, 10.1098/rstb.2000.0589
Kosztin, 1997, Binding of the estrogen receptor to DNA: The role of waters, Biophys. J., 73, 557, 10.1016/S0006-3495(97)78093-7
Krammer, 2002, A structural model for force regulated integrin binding to fibronectin's RGD-synergy site, Matrix Biol., 21, 139, 10.1016/S0945-053X(01)00197-4
Krammer, 1999, Forced unfolding of the fibronectin type III module reveals a tensile molecular recognition switch, Proc. Nat. Acad. Sci. USA, 96, 1351, 10.1073/pnas.96.4.1351
Leahy, 1996, 2.0 Å crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region, Cell, 84, 155, 10.1016/S0092-8674(00)81002-8
Li, 2001, Impaired hearing in mice lacking aquaporin-4 water channels, J. Biol. Chem., 276, 31233, 10.1074/jbc.M104368200
Lindahl, 2001, GROMACS 3.0: a package for molecular simulation and trajectory analysis, J. Mol. Mod, 10.1007/s008940100045
Litvinovich, 1998, Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module, J. Mol. Biol., 280, 245, 10.1006/jmbi.1998.1863
Lu, 1998, Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation, Biophys. J., 75, 662, 10.1016/S0006-3495(98)77556-3
Lu, 2000, The key event in force-induced unfolding of titin's immunoglobulin domains, Biophys. J., 79, 51, 10.1016/S0006-3495(00)76273-4
Lynch, 2002, Dissecting the molecular origins of protein-nucleic acid recognition: Hydrostatic pressure and molecular dynamics, Biophys. J., 82, 93, 10.1016/S0006-3495(02)75376-9
Ma, 2002, A dynamics analysis of the rotation mechanism for conformational change in F1-ATPase, Structure, 10, 921, 10.1016/S0969-2126(02)00789-X
MacKerell, 1992, Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations, FASEB J., 6, A143
Masaike, 2000, Rotation of F1-ATPase and the hinge structures of the β subunit, J. Exp. Biol., 203, 1, 10.1242/jeb.203.1.1
McCammon, 1977, Dynamics of folded proteins, Nature, 267, 585, 10.1038/267585a0
Menz, 2001, Structure of bovine mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: Implications for the mechanism of rotary catalysis, Cell, 106, 331, 10.1016/S0092-8674(01)00452-4
Mogilner, 2002, Molecular motors: theory & experiment, 321
Monticello, 1994, Role of the delta subunit in enhancing proton conduction through the F0 of the Escherichia coli F1F0 ATPase, J. Bacteriol., 176, 1383, 10.1128/jb.176.5.1383-1389.1994
Murata, 2000, Structural determinants of water permeation through aquaporin-1, Nature, 407, 599, 10.1038/35036519
Noji, 1999, Rotation of escheria coli F1-ATPase, Biochem. Biophys. Res. Comm., 260, 597, 10.1006/bbrc.1999.0885
Noji, 1997, Direct observation of the rotation of F1-ATPase, Nature, 386, 299, 10.1038/386299a0
Oberhauser, 2002, The mechanical hierarchies of fibronectin observed with single molecule AFM, J. Mol. Biol., 319, 433, 10.1016/S0022-2836(02)00306-6
Oberhauser, 1998, The molecular elasticity of tenascin, an extracellular matrix protein, Nature, 393, 181, 10.1038/30270
Ohashi, 1999, Dynamics and elasticity of the fibronectin matrix in living cell culture visualized by fibronectin-green fluorescent protein, Proc. Nat. Acad. Sci. USA, 96, 2153, 10.1073/pnas.96.5.2153
Oster, 2000, Reverse engineering a protein: the mechanochemistry of ATP synthase, Biochimi. Biophys. Acta, 1458, 482, 10.1016/S0005-2728(00)00096-7
Paci, 1999, Forced unfolding of fibronectin type 3 modules: an analysis by biased molecular dynamics simulations, J. Mol. Biol., 288, 441, 10.1006/jmbi.1999.2670
Pänke, 2001, Viscoelastic dyanamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme, Biophys. J., 81, 1220, 10.1016/S0006-3495(01)75780-3
Pänke, 1999, Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction, Biochim. Biophys. Acta, 1412, 118, 10.1016/S0005-2728(99)00059-6
Phillips, 1997, Predicting the structure of apolipoprotein A-I in reconstituted high density lipoprotein disks, Biophys. J., 73, 2337, 10.1016/S0006-3495(97)78264-X
Phillips, 2002, Quasicontinuum representations of atomic-scale mechanics: From proteins to dislocations, Ann. Rev. Mat. Res., 32, 219, 10.1146/annurev.matsci.32.122001.102202
Pomès, 1996, Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel, Biophys. J., 71, 19, 10.1016/S0006-3495(96)79211-1
Pomès, 1996, Theoretical study of H+ translocation along a model proton wire, J. Phys. Chem., 100, 2519, 10.1021/jp9525752
Pomès, 2002, Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel, Biophys. J., 82, 2304, 10.1016/S0006-3495(02)75576-8
Preston, 1991, Isolation of the cDNA for erythrocyte integral membrane-protein of 28-kD – member of an ancient channel family, Proc. Nat. Acad. Sci. USA, 88, 11110, 10.1073/pnas.88.24.11110
Randa, 1999, Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane, Biophys. J., 77, 2400, 10.1016/S0006-3495(99)77077-3
Rastogi, 1999, Structural changes linked to proton translocation by subunit c of the ATP synthase, Nature, 402, 263, 10.1038/46224
Ren, 2001, Visualization of a water-selective pore by electron crystallography in vitreous ice, Proc. Nat. Acad. Sci. USA, 98, 1398, 10.1073/pnas.98.4.1398
Ren, 2000, On what makes the γ subunit spin during ATP hydrolysis by F1, Biochim. Biophys. Acta Bioenerg., 1458, 221, 10.1016/S0005-2728(00)00075-X
Reuss, 1998, Focus on “effect of expressing the water channel aquaporin-1 on the CO2 permeability of Xenopus oocytes.”, Am. J. Physiol., 274, C297, 10.1152/ajpcell.1998.274.2.C297
Rickey, 1972, Importance of facilitated diffusion for effective utilization of glycerol by Escherichia coli, J. Bacteriol., 112, 784, 10.1128/JB.112.2.784-790.1972
Rief, 1998, The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by AFM, Biophys. J., 75, 3008, 10.1016/S0006-3495(98)77741-0
Saam, 2002, Molecular dynamics investigation of primary photoinduced events in the activation of rhodopsin, Biophys. J., 83, 3097, 10.1016/S0006-3495(02)75314-9
Sansom, 2001, Membrane proteins: Aquaporins—channels without ions, Curr. Biol., 11, R71, 10.1016/S0960-9822(01)00009-4
Schlitter, 1993, Targeted molecular dynamics simulation of conformational change—application to the T ↔ R transition in insulin, Mol. Simul., 10, 291, 10.1080/08927029308022170
Schwarzbauer, 1999, Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly, Curr. Opin. Cell Biol., 11, 622, 10.1016/S0955-0674(99)00017-4
Senior, 2002, The molecular mechanism of ATP synthesis by F1Fo-ATP synthase, Biochim. Biophys. Acta, 1553, 188, 10.1016/S0005-2728(02)00185-8
Sharma, 1999, Crystal structure of a heparin- and integrin-binding segment of human fibronectin, EMBO J., 18, 1468, 10.1093/emboj/18.6.1468
Shi, 1994, Functional independence of monomeric CHIP28 water channels revealed by expression of wild-type-mutant heterodimers, J. Biol. Chem., 269, 10417, 10.1016/S0021-9258(17)34076-0
Stock, 1999, Molecular architecture of the rotary motor in ATP synthase, Science, 286, 1700, 10.1126/science.286.5445.1700
Sui, 2001, Structural basis of water-specific transport through the AQP1 water channel, Nature, 414, 872, 10.1038/414872a
Sun, 2003, Elastic energy storage in F1-ATPase, Eur. Biophys. J., 10.1007/s00249-003-0335-6
Tajkhorshid, 2002, Control of the selectivity of the aquaporin water channel family by global orientational tuning, Science, 296, 525, 10.1126/science.1067778
Takeyama, 1988, F0 portion of Escherichia coli h+-ATPase, J. Biol. Chem., 31, 16106, 10.1016/S0021-9258(18)37564-1
Takeyasu, 1996, Molecular imaging of Escherichia coli F0F1-ATPase in reconstituted membranes using atomic force microscopy, FEBS Lett., 392, 110, 10.1016/0014-5793(96)00796-X
Valiyaveetil, 1997, On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F1F0 ATP synthase, J. Biol. Chem., 272, 32635, 10.1074/jbc.272.51.32635
Verkman, 2000, Structure and function of aquaporin water channels, Am. J. Phys. – Renal Phys., 278, F13
Vogel, 2001, Structural insights into the mechanical regulation of molecular recognition sites, Trends Biotechnol., 19, 416, 10.1016/S0167-7799(01)01737-1
Walz, 1997, Two-dimensional crystallization of the light-harvesting I reaction centre photounit from Rhodospirillum rubrum, J. Mol. Biol., 265, 107, 10.1006/jmbi.1996.0714
Walz, 1997, The three-dimensional structure of aquaporin-1, Nature, 387, 624, 10.1038/42512
Wang, 2002, Ratchets, power strokes, and molecular motors, Appl. Phys. A, 75, 315, 10.1007/s003390201340
Wang, 1998, Energy transduction in the F1 motor of ATP synthase, Nature, 396, 279, 10.1038/24409
Weber, 2000, ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis, Biochim. Biophys. Acta Bioenerg., 1458, 300, 10.1016/S0005-2728(00)00082-7
Weiner, 1981, AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions, J. Comput. Chem., 2, 287, 10.1002/jcc.540020311
Wistow, 1991, Tandem sequence repeats in transmembrane channel proteins, Trends Biochem. Sci., 16, 170, 10.1016/0968-0004(91)90065-4
Wriggers, 1999, Investigating a back door mechanism of actin phosphate release by steered molecular dynamics, PROTEINS: Struct., Funct., Genet., 35, 262, 10.1002/(SICI)1097-0134(19990501)35:2<262::AID-PROT11>3.0.CO;2-N
Xiong, 2001, Crystal structure of the extracellular segment of integrin αvβ3, Science, 294, 339, 10.1126/science.1064535
Xiong, 2002, Crystal structure of the extracellular segment of integrin αvβ3 in complex with an arg-gly-asp ligand, Science, 296, 151, 10.1126/science.1069040
Yasuda, 2001, Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATP-ase, Nature, 410, 898, 10.1038/35073513
Zeidel, 1992, Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein, Biochem., 31, 7436, 10.1021/bi00148a002
Zhang, 1996, Hydrophilicity of cavities in proteins, PROTEINS: Struct., Funct., Genet., 24, 433, 10.1002/(SICI)1097-0134(199604)24:4<433::AID-PROT3>3.0.CO;2-F
Zhang, 1994, Essential aspartates in subunit c of F1F0 ATP synthase, J. Biol. Chem., 269, 5473, 10.1016/S0021-9258(17)37710-4
Zhou, 1995, Molecular dynamics study of a membrane–water interface, J. Phys. Chem., 99, 2194, 10.1021/j100007a059
Zhu, 2001, Molecular dynamics study of aquaporin-1 water channel in a lipid bilayer, FEBS Lett., 504, 212, 10.1016/S0014-5793(01)02749-1
Zhu, 2002, Pressure-induced water transport in membrane channels studied by molecular dynamics, Biophys. J., 83, 154, 10.1016/S0006-3495(02)75157-6
