Large-Scale, Full-Wave-Based Emulation of Step-Frequency Forward-Looking Radar Imaging in Rough Terrain Environments
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kositsky, J., Cosgrove, R., Amazeen, C., & Milanfar, P. (2002). Results from a forward-looking GPR mine detection system. Proceedings of SPIE, 4742. doi: 10.1117/12.479091 .
Bradley, M., Witten, T., Duncan, M., & McCummins, B. (2003). Mine detection with a forward-looking ground-penetrating synthetic aperture radar. Proceedings of SPIE, 5089. doi: 10.1117/12.487054 .
Wang, T., Sjahputera, O., Keller, J. M., & Gader, P. D. (2005). Landmine detection using forward-looking GPR with object tracking. Proceedings of SPIE, 5794. doi: 10.1117/12.604172 .
Ressler, M., Nguyen, L., Koenig, F., Wong, D., & Smith, G. (2007). The army research laboratory (ARL) synchronous impulse reconstruction (SIRE) forward-looking radar. Proceedings of SPIE, 6561. doi: 10.1117/12.719688 .
Wang, J., Li, Y., Zhou, Z., Jin, T., Yang, Y., & Wang, Y. (2008). Image formation techniques for vehicle-mounted forward-looking ground-penetrating SAR. International Conference on Information and Automation.
Liao, D. H. (2011). Full-wave characterization of rough terrain surface effects for forward-looking radar applications: A scattering and imaging study from the electromagnetic perspective. Technical report ARL-TR-5758, US Army Research Laboratory.
Bourgeois, J. M., & Smith, G. S. (1996). A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 36–44.
Bourgeois, J. M., & Smith, G. S. (1998). A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines. IEEE Transactions on Antennas and Propagation, 44(10), 1419–1426.
Teixeira, F. L., Chew, W. C., Straka, M., Oristaglio, M. L., & Wang, T. (1998). Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Transactions on Antennas and Propagation, 36(6), 1928–1937.
Gürel, L., & Oğuz, U. (2000). Three-dimensional FDTD modeling of a ground-penetrating radar. IEEE Transactions on Geoscience and Remote Sensing, 38(4), 1513–1521.
Gürel, L., & Oğuz, U. (2001). Simulations of ground-penetrating radars over lossy and heterogeneous grounds. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1190–1197.
Lampe, B., & Holliger, K. (2001). Numerical modeling of a complete ground-penetrating radar system. Proceedings of SPIE, 4491. doi: 10.1117/12.450151 .
Uduwawala, D., Norgren, M., & Fuks, P. (2005). A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds. Progress in Electromagnetics Research, 50, 209–229.
Wannamaker, P., Hohmann, G., & SanFilipo, W. (1984). Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations. Geophysics, 49, 60–74.
Ellis, G. A. & Peden, I. C. (1995). An analysis technique for buried inhomogeneous dielectric objects in the presence of an air-earth interface. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 535–540.
Vitebskiy, S., & Carin, L. (1995). Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space. IEEE Transactions on Antennas and Propagation, 43(11), 1303–1312.
He, J., Yu, T., Geng, N., & Carin, L. (2000). Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium. Radio Science, 35(2), 305–313.
El-Shenawee, M., Rappaport, C., Miller, E. L., & Silevitch, M. B. (2001). Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use of the steepest descent fast multipole method. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1174–1182.
El-Shenawee, M., Rappaport, C., & Silevitch, M. (2001). Monte carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: Mine detection application using the steepest-descent fast multipole method. Optics, Image Science, and vision, 18, 3077–3084.
Johnson, J. T., & Burkholder, R. J. (2001). Coupled canonical grid/discrete dipole approach for computing scattering from objects above or below a rough interface. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1214–1220.
El-Shenawee, M., & Rappaport, C. (2002). Monte Carlo simulations for clutter statistics in minefields: AP-mine-like-target buried near a dielectric object beneath 2-D random rough ground surfaces. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1416–1426.
Johnson, J. T. (2002). A numerical study of scattering from an object above a rough surface. IEEE Transactions on Antennas and Propagation, 50(10), 1361–1367.
Wang, X., Wang, C.-F., & Gan, Y.-B. (2003). Electromagnetic scattering from a circular target above or below rough surface. Progress in Electromagnetics Research, 40, 207–227.
Altuncu, Y., Yapar, A., & Akduman, I. (2006). On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1435–1443.
Guan, B., Zhang, J. F., Zhou, X. Y., & Cui, T. J. (2009). Electromagnetic scattering from objects above a rough surface using the method of moments with half-space green’s function. IEEE Transactions on Geoscience and Remote Sensing, 47(10), 3399–3405.
Liao, D. H., Dogaru, T., & Sullivan, A. (2010). Characterization of rough surface clutter for forward-looking radar applications. Proceedings of the 27th Army Science Conference.
Liao D. H., & Dogaru, T. (2011). A comparison of surface integral equation and FDTD methods for modeling backscattering from dielectric rough surfaces at near-grazing angles. Proceedings of IEEE Antennas and Propagation Soc. Symp.
Liao, D. H., & Dogaru, T. (2011). Full-wave-based emulation of forward-looking radar target imaging in rough terrain environment. Proceedings of IEEE antennas and propagation Soc. Symp.
Liao, D. H., & Dogaru, T. (2012). Full-wave characterization of rough terrain surface scattering for forward-looking radar applications. IEEE Transactions on Antennas and Propagation, 60(8), 3853–3866.
Dobson, M. C., Ulaby, F. T., Hallikaiken, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil—part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 23(1), 35–46.
Peplilnski, N. R., Ulaby, F. T., & Dobson, M. C. (1995). Dielectric properties of soils in the 0.3–1.3 GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 803–807.
Austin, R. T. (1994). Electromagnetic wave scattering by power-law surfaces. PhD thesis, The University of Michigan.
De Roo, R. D. (1996). Theory and measurement of bistatic scattering of X-band microwaves from rough dielectric surfaces. PhD thesis, The University of Michigan.
Thorsos, E. I. (1988). The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. The Journal of the Acoustical Society of America, 83, 78–92.
Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370–381.
Li, Q., Shi, J., & Chen, K. S. (2002). A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model. IEEE Transactions on Geoscience and Remote Sensing, 40(2), 271–280.
Taflove, A., & Hagness, S. C. (2005). Computational electrodynamics: The finite-difference time-domain method, third edition. Artech House, Boston, MA.
Borcea, L., Papanicolaou, G., & Tsogka, C. (2003). A resolution study for imaging and time reversal in random media. Contemporary Mathematics, 333, 63–77.
Sarabandi, K., Koh, I., & Casciato, M. (2004). Demonstration of time reversal methods in a multi-path environment. Proceedings of IEEE Antennas and Propagation Soc. Symp.
Tsang, L., Kong, J. A., & Shin, R. T. (1985). Theory of microwave remote sensing. New York: Wiley-Interscience.
Liao, D. H., & Sarabandi, K. (2005). Near-earth wave propagation characteristics of electric dipole in presence of vegetation or snow layer. IEEE Transactions on Antennas and Propagation, 53(11), 3747–3756.
Liao, D. H. (2009). Physics-based near-earth radiowave propagation modeling and simulation. PhD thesis, The University of Michigan.
FEKO. (2011). Version 6.0. EM Software and Systems, Stellenbosch, South Africa.
Zhuge, X., & Yarovoy, A.G. (2011). A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 509–518.