Large-Scale, Full-Wave-Based Emulation of Step-Frequency Forward-Looking Radar Imaging in Rough Terrain Environments

DaHan Liao1, Traian Dogaru2, Anders Sullivan2
1US Army Research Laboratory ,
2US Army Research Laboratory, Adelphi, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kositsky, J., Cosgrove, R., Amazeen, C., & Milanfar, P. (2002). Results from a forward-looking GPR mine detection system. Proceedings of SPIE, 4742. doi: 10.1117/12.479091 .

Bradley, M., Witten, T., Duncan, M., & McCummins, B. (2003). Mine detection with a forward-looking ground-penetrating synthetic aperture radar. Proceedings of SPIE, 5089. doi: 10.1117/12.487054 .

Wang, T., Sjahputera, O., Keller, J. M., & Gader, P. D. (2005). Landmine detection using forward-looking GPR with object tracking. Proceedings of SPIE, 5794. doi: 10.1117/12.604172 .

Ressler, M., Nguyen, L., Koenig, F., Wong, D., & Smith, G. (2007). The army research laboratory (ARL) synchronous impulse reconstruction (SIRE) forward-looking radar. Proceedings of SPIE, 6561. doi: 10.1117/12.719688 .

Wang, J., Li, Y., Zhou, Z., Jin, T., Yang, Y., & Wang, Y. (2008). Image formation techniques for vehicle-mounted forward-looking ground-penetrating SAR. International Conference on Information and Automation.

Liao, D. H. (2011). Full-wave characterization of rough terrain surface effects for forward-looking radar applications: A scattering and imaging study from the electromagnetic perspective. Technical report ARL-TR-5758, US Army Research Laboratory.

Bourgeois, J. M., & Smith, G. S. (1996). A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment. IEEE Transactions on Geoscience and Remote Sensing, 34(1), 36–44.

Bourgeois, J. M., & Smith, G. S. (1998). A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines. IEEE Transactions on Antennas and Propagation, 44(10), 1419–1426.

Teixeira, F. L., Chew, W. C., Straka, M., Oristaglio, M. L., & Wang, T. (1998). Finite-difference time-domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils. IEEE Transactions on Antennas and Propagation, 36(6), 1928–1937.

Gürel, L., & Oğuz, U. (2000). Three-dimensional FDTD modeling of a ground-penetrating radar. IEEE Transactions on Geoscience and Remote Sensing, 38(4), 1513–1521.

Gürel, L., & Oğuz, U. (2001). Simulations of ground-penetrating radars over lossy and heterogeneous grounds. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1190–1197.

Lampe, B., & Holliger, K. (2001). Numerical modeling of a complete ground-penetrating radar system. Proceedings of SPIE, 4491. doi: 10.1117/12.450151 .

Uduwawala, D., Norgren, M., & Fuks, P. (2005). A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds. Progress in Electromagnetics Research, 50, 209–229.

Wannamaker, P., Hohmann, G., & SanFilipo, W. (1984). Electromagnetic modeling of three-dimensional bodies in layered earths using integral equations. Geophysics, 49, 60–74.

Ellis, G. A. & Peden, I. C. (1995). An analysis technique for buried inhomogeneous dielectric objects in the presence of an air-earth interface. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 535–540.

Vitebskiy, S., & Carin, L. (1995). Moment-method modeling of short-pulse scattering from and the resonances of a wire buried inside a lossy, dispersive half-space. IEEE Transactions on Antennas and Propagation, 43(11), 1303–1312.

He, J., Yu, T., Geng, N., & Carin, L. (2000). Method of moments analysis of electromagnetic scattering from a general three-dimensional dielectric target embedded in a multilayered medium. Radio Science, 35(2), 305–313.

El-Shenawee, M., Rappaport, C., Miller, E. L., & Silevitch, M. B. (2001). Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use of the steepest descent fast multipole method. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1174–1182.

El-Shenawee, M., Rappaport, C., & Silevitch, M. (2001). Monte carlo simulations of electromagnetic wave scattering from a random rough surface with three-dimensional penetrable buried object: Mine detection application using the steepest-descent fast multipole method. Optics, Image Science, and vision, 18, 3077–3084.

Johnson, J. T., & Burkholder, R. J. (2001). Coupled canonical grid/discrete dipole approach for computing scattering from objects above or below a rough interface. IEEE Transactions on Geoscience and Remote Sensing, 39(6), 1214–1220.

El-Shenawee, M., & Rappaport, C. (2002). Monte Carlo simulations for clutter statistics in minefields: AP-mine-like-target buried near a dielectric object beneath 2-D random rough ground surfaces. IEEE Transactions on Geoscience and Remote Sensing, 40(6), 1416–1426.

Johnson, J. T. (2002). A numerical study of scattering from an object above a rough surface. IEEE Transactions on Antennas and Propagation, 50(10), 1361–1367.

Wang, X., Wang, C.-F., & Gan, Y.-B. (2003). Electromagnetic scattering from a circular target above or below rough surface. Progress in Electromagnetics Research, 40, 207–227.

Altuncu, Y., Yapar, A., & Akduman, I. (2006). On the scattering of electromagnetic waves by bodies buried in a half-space with locally rough interface. IEEE Transactions on Geoscience and Remote Sensing, 44(6), 1435–1443.

Guan, B., Zhang, J. F., Zhou, X. Y., & Cui, T. J. (2009). Electromagnetic scattering from objects above a rough surface using the method of moments with half-space green’s function. IEEE Transactions on Geoscience and Remote Sensing, 47(10), 3399–3405.

Liao, D. H., Dogaru, T., & Sullivan, A. (2010). Characterization of rough surface clutter for forward-looking radar applications. Proceedings of the 27th Army Science Conference.

Liao D. H., & Dogaru, T. (2011). A comparison of surface integral equation and FDTD methods for modeling backscattering from dielectric rough surfaces at near-grazing angles. Proceedings of IEEE Antennas and Propagation Soc. Symp.

Liao, D. H., & Dogaru, T. (2011). Full-wave-based emulation of forward-looking radar target imaging in rough terrain environment. Proceedings of IEEE antennas and propagation Soc. Symp.

Liao, D. H., & Dogaru, T. (2012). Full-wave characterization of rough terrain surface scattering for forward-looking radar applications. IEEE Transactions on Antennas and Propagation, 60(8), 3853–3866.

Dobson, M. C., Ulaby, F. T., Hallikaiken, M. T., & El-Rayes, M. A. (1985). Microwave dielectric behavior of wet soil—part II: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 23(1), 35–46.

Peplilnski, N. R., Ulaby, F. T., & Dobson, M. C. (1995). Dielectric properties of soils in the 0.3–1.3 GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 803–807.

Austin, R. T. (1994). Electromagnetic wave scattering by power-law surfaces. PhD thesis, The University of Michigan.

De Roo, R. D. (1996). Theory and measurement of bistatic scattering of X-band microwaves from rough dielectric surfaces. PhD thesis, The University of Michigan.

Thorsos, E. I. (1988). The validity of the Kirchhoff approximation for rough surface scattering using a Gaussian roughness spectrum. The Journal of the Acoustical Society of America, 83, 78–92.

Oh, Y., Sarabandi, K., & Ulaby, F. T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370–381.

Li, Q., Shi, J., & Chen, K. S. (2002). A generalized power law spectrum and its applications to the backscattering of soil surfaces based on the integral equation model. IEEE Transactions on Geoscience and Remote Sensing, 40(2), 271–280.

Taflove, A., & Hagness, S. C. (2005). Computational electrodynamics: The finite-difference time-domain method, third edition. Artech House, Boston, MA.

Hubral, P., & Tygel, M. (1989). Analysis of the Rayleigh pulse. Geophysics, 54, 654–658.

Borcea, L., Papanicolaou, G., & Tsogka, C. (2003). A resolution study for imaging and time reversal in random media. Contemporary Mathematics, 333, 63–77.

Sarabandi, K., Koh, I., & Casciato, M. (2004). Demonstration of time reversal methods in a multi-path environment. Proceedings of IEEE Antennas and Propagation Soc. Symp.

Tsang, L., Kong, J. A., & Shin, R. T. (1985). Theory of microwave remote sensing. New York: Wiley-Interscience.

Liao, D. H., & Sarabandi, K. (2005). Near-earth wave propagation characteristics of electric dipole in presence of vegetation or snow layer. IEEE Transactions on Antennas and Propagation, 53(11), 3747–3756.

Liao, D. H. (2009). Physics-based near-earth radiowave propagation modeling and simulation. PhD thesis, The University of Michigan.

FEKO. (2011). Version 6.0. EM Software and Systems, Stellenbosch, South Africa.

Zhuge, X., & Yarovoy, A.G. (2011). A sparse aperture MIMO-SAR-based UWB imaging system for concealed weapon detection. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 509–518.

Nuttall, A. H. (1981). Some windows with very good sidelobe behavior. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-29(1), 84–91.