Large-Scale Cultivation of Spirulina for Biological CO2 Mitigation in Open Raceway Ponds Using Purified CO2 From a Coal Chemical Flue Gas

Baohua Zhu1, Han Shen1, Yun Li1, Qiuke Liu1, Guiyong Jin1, Jichang Han2, Yan Zhao2, Kehou Pan3,1
1Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao, China
2College of Marine Life Sciences, Ocean University of China, Qingdao, China
3Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Almomani, 2019, Impact of CO2 concentration and ambient conditions on microalgal growth and nutrient removal from wastewater by a photobioreactor, Sci. Total Environ, 662, 662, 10.1016/j.scitotenv.2019.01.144

Badger, 1994, The role of carbonic anhydrase in photosynthesis, Annu. Rev. Plant Phys, 45, 369, 10.1146/annurev.pp.45.060194.002101

Bao, 2012, In situ carbon supplementation in large-scale cultivations of Spirulina platensis in open raceway pond, Biotechnol. Bioprocess Eng, 17, 93, 10.1007/s12257-011-0319-9

Belay, 2002, The potential application of Spirulina (Arthrospira) as a nutritional and therapeutic supplement in health management, J. Am. Nutraceut. Assoc, 5, 27

Belay, 2008, “Spirulina platensis (arthrospira): production and quality assurance,”, Spirulina in Human Nutrition and Health, 2

Binaghi, 2003, Batch and fed-batch uptake of carbon dioxide by Spirulina platensis, Process. Biochem, 38, 1341, 10.1016/S0032-9592(03)00003-7

Cardias, 2018, CO2 conversion by the integration of biological and chemical methods: Spirulina sp. LEB 18 cultivation with diethanolamine and potassium carbonate addition, Bioresour. Technol, 267, 77, 10.1016/j.biortech.2018.07.031

Chen, 1994, Effects of pH on the growth and carbon uptake of marine phytoplankton, Mar. Ecol. Prog. Ser, 109, 83, 10.3354/meps109083

Chen, 2016, Using an innovative pH-stat CO2 feeding strategy to enhance cell growth and C-phycocyanin production from Spirulina platensis, Biochem. Eng. J, 112, 78, 10.1016/j.bej.2016.04.009

Chen, 2013, Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis, Bioresour. Technol, 145, 307, 10.1016/j.biortech.2013.01.054

Cheng, 2018, Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660 m2 raceway ponds under purified carbondioxide from a coal chemical flue gas, Bioresour. Technol., 261, 76, 10.1016/j.biortech.2018.04.017

Cheng, 2013, Mutate chlorella sp. by nuclear irradiation to fix high concentrations of CO2, Bioresour. Technol., 136, 496, 10.1016/j.biortech.2013.03.072

Costa, 2004, Improving Spirulina platensis biomass yield using a fed-batch process, Bioresour. Technol, 92, 237, 10.1016/j.biortech.2003.09.013

da Rosa, 2016, Spirulina cultivation with a CO2 absorbent: influence on growth parameters and macromolecule production, Bioresour. Technol, 200, 528, 10.1016/j.biortech.2015.10.025

da Silva Vaz, 2016, CO2 biofixation by the cyanobacterium Spirulina sp. LEB 18 and the green alga chlorella fusca LEB 111 grown using gas effluents and solid residues of thermoelectric origin, Appl. Biochem. Biotechnol, 178, 418, 10.1007/s12010-015-1876-8

Duarte, 2017, Biological CO2 mitigation from coal power plant by chlorella fusca and Spirulina sp, Bioresour. Technol, 234, 472, 10.1016/j.biortech.2017.03.066

Fu, 2019, Sugar-stimulated CO2 sequestration by the green microalga chlorella vulgaris, Sci. Total Environ, 654, 275, 10.1016/j.scitotenv.2018.11.120

Hancke, 2015, Phytoplankton productivity in an arctic fjord (West Greenland): estimating electron requirements for carbon fixation and oxygen production, PLoS ONE, 10, e0133275, 10.1371/journal.pone.0133275

Kuo, 2018, An efficient photobioreactors/raceway circulating system combined with alkaline-CO2 capturing medium for microalgal cultivation, Bioresour. Technol, 266, 398, 10.1016/j.biortech.2018.06.090

Matsudo, 2012, Photosynthetic efficiency and rate of CO2 assimilation by arthrospira (Spirulina) platensis continuously cultivated in a tubular photobioreactor, Biotechnol. J, 7, 1412, 10.1002/biot.201200177

Morais, 2007, Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor, J. Biotechnol, 129, 439, 10.1016/j.jbiotec.2007.01.009

Nayak, 2013, Maximizing biomass productivity and CO2 biofixation of microalga, Scenedesmus sp. by using sodium hydroxide, J. Microbiol. Biotechnol, 23, 1260, 10.4014/jmb.1302.02044

Nayak, 2018, Enhanced carbon utilization efficiency and FAME production of chlorella sp. HS2 through combined supplementation of bicarbonate and carbon dioxide, Energy.Convers. Manage., 156, 45, 10.1016/j.enconman.2017.11.002

Ogbonda, 2007, Influence of temperature and pH on biomass production and protein biosynthesis in a putative Spirulina sp, Bioresour. Technol, 98, 2207, 10.1016/j.biortech.2006.08.028

Pandit, 2017, Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in acutodesmus obliquus and chlorella vulgaris, Environ. Sci. Pollut. Res. Int, 24, 13437, 10.1007/s11356-017-8875-y

Qiu, 2017, Effects of pH on cell growth, lipid production and CO2 addition of microalgae chlorella sorokiniana, Algal. Res, 28, 192, 10.1016/j.algal.2017.11.004

Razzak, 2017, Biological CO2 fixation with production of microalgae in wastewater - a review, Renew. Sust. Energy Rev, 76, 379, 10.1016/j.rser.2017.02.038

Rodolfi, 2009, Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng, 102, 100, 10.1002/bit.22033

Rosa, 2011, Carbon dioxide fixation by microalgae cultivated in open bioreactors, Energy. Convers. Manage, 52, 3071, 10.1016/j.enconman.2011.01.008

Sepulveda, 2019, Comparative evaluation of microalgae strains for CO2 capture purposes, J. CO, 30, 158, 10.1016/j.jcou.2019.02.004

Sydney, 2010, Potential carbon dioxide fixation by industrially important microalgae, Bioresour. Technol, 101, 5892, 10.1016/j.biortech.2010.02.088

Vonshak, 1997, “Spirulina: growth, physiology and biochemistry,”, Spirulina platensis (Arthrospira) Physiology, Cell-Biology and Biotechnology, 43, 10.1201/9781482272970-11

Wang, 2008, CO2 bio-mitigation using microalgae, Appl. Microbiol. Biotechnol, 79, 707, 10.1007/s00253-008-1518-y

Weiner, 2012, Applications of Environmental Aquatic Chemistry: A Practical Guide, 3rd Edn, 10.1201/b12963

Yadav, 2017, Microalgal green refinery concept for biosequestration of carbon dioxide vis-à-vis wastewater remediation and bioenergy production: recent technological advances in climate research, J. CO2 Util, 17, 188, 10.1016/j.jcou.2016.12.006

Yoo, 2010, Selection of microalgae for lipid production under high levels carbon dioxide, Bioresour. Technol, 101, S71, 10.1016/j.biortech.2009.03.030

Zarrouk, 1966, Influence de Divers Facteurs Physiques et Chimiques sur la Croissance et la Photosynthèse de Spirulina Maxima (Setch. Et Garndner) Geitler

Zeng, 2012, Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production, Chem. Eng. J, 183, 192, 10.1016/j.cej.2011.12.062