Large Magnetic Entropy Change in GdRuSi Optimal for Magnetocaloric Liquefaction of Nitrogen
Tóm tắt
Từ khóa
Tài liệu tham khảo
Li, 2020, Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration, J. Alloys Compd., 823, 153810, 10.1016/j.jallcom.2020.153810
Franco, 2018, Magnetocaloric effect: From materials research to refrigeration devices, Prog. Mater. Sci., 93, 112, 10.1016/j.pmatsci.2017.10.005
Li, 2016, Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals, Chin. Phys., 25, 037502, 10.1088/1674-1056/25/3/037502
Zhang, 2019, Review of the structural, magnetic and magnetocaloric properties in ternary rare earth RE2T2X type intermetallic compounds, J. Alloys Compd., 787, 1173, 10.1016/j.jallcom.2019.02.175
Li, 2019, An efficient scheme to tailor the magnetostructural transitions by staged quenching and cyclical ageing in hexagonal martensitic compounds, Acta Mater., 174, 289, 10.1016/j.actamat.2019.05.042
Qu, 2018, Simultaneously achieved large reversible elastocaloric and magnetocaloric effects and their coupling in a magnetic shape memory compound, Acta Mater., 151, 41, 10.1016/j.actamat.2018.03.031
Ouyang, 2020, Plastically deformed La-Fe-Si: Microstructural evolution, magnetocaloric effect and anisotropic thermal conductivity, Acta Mater., 187, 1, 10.1016/j.actamat.2020.01.030
Gupta, 2015, Review on magnetic and related properties of RTX compounds, J. Alloys Compd., 618, 562, 10.1016/j.jallcom.2014.08.079
Zhang, 2015, Magnetocaloric effects in RTX intermetallic compounds (R = Gd–Tm, T= Fe–Cu and Pd, X = Al and Si), Chin. Phys., 24, 127504, 10.1088/1674-1056/24/12/127504
Nakajima, 2020, Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet, Nat. Nanotechnol., 15, 444, 10.1038/s41565-020-0684-7
Welter, 1992, Magnetic properties of RFeSi (R≡La–Sm, Gd–Dy) from susceptibility measurements and neutron diffraction studies, J. Alloys Compd., 189, 49, 10.1016/0925-8388(92)90045-B
Welter, 1993, Crystallographic data and magnetic properties of new RTX compounds (R=La–Sm, Gd; T=Ru, Os; X=Si, Ge). Magnetic structure of NdRuSi, J. Alloys Compd., 202, 165, 10.1016/0925-8388(93)90536-V
Wlodarczyk, 2015, Characterization of magnetocaloric effect, magnetic ordering and electronic structure in the GdFe1-xCoxSi intermetallic compounds, Mater. Chem. Phys., 162, 273, 10.1016/j.matchemphys.2015.05.067
Kuchin, 2019, Magnetic and Structural Properties of GdFe1–xTixSi, IEEE Magn. Lett., 10, 2509204, 10.1109/LMAG.2019.2955052
Zhang, 2013, Large magnetocaloric effects of RFeSi (R=Tb and Dy) compounds for magnetic refrigeration in nitrogen and natural gas liquefaction, Appl. Phys. Lett., 103, 202412, 10.1063/1.4832218
Guzik, 2020, Magnetocaloric effect of the Gd3-xTbxCo system, Intermetallics, 118, 106686, 10.1016/j.intermet.2019.106686
Yang, 2017, Magnetic and magnetocaloric properties of the ternary cadmium based intermetallic compounds of Gd2Cu2Cd and Er2Cu2Cd, J. Alloys Compd., 692, 665, 10.1016/j.jallcom.2016.09.104
Anisimov, 1997, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+U method, J. Phys. Condens. Matter, 9, 767, 10.1088/0953-8984/9/4/002
Giannozzi, 2017, Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys. Condens. Matter, 29, 465901, 10.1088/1361-648X/aa8f79
Giannozzi, 2009, Quantum ESPRESSO: A modular and open-source software project for Quantum simulations of materials, J. Phys. Condens. Matter, 21, 395502, 10.1088/0953-8984/21/39/395502
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Topsakal, 2014, Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu), Comput. Mater. Sci., 95, 263, 10.1016/j.commatsci.2014.07.030
(2022, December 29). Quantum ESPRESSO, Pseudopotentials. Available online: https://www.quantum-espresso.org/pseudopotentials.
Kuchin, 2021, Remarkable increase of Curie temperature in doped GdFeSi compound, Intermetallics, 133, 107183, 10.1016/j.intermet.2021.107183
Napoletano, 2000, Magnetic properties and the magnetocaloric effect in the intermetallic compound GdFeSi, J. Mater. Chem., 10, 1663, 10.1039/a910204n
Leciejewicz, 1984, Magnetic properties of RERu2Si2 (RE = Pr, Nd, Gd, Tb, Dy, Er) intermetallics, J. Magn. Magn. Mater., 46, 114, 10.1016/0304-8853(84)90348-2
Gębara, P., and Hasiak, M. (2021). Determination of Phase Transition and Critical Behavior of the As-Cast GdGeSi-(X) Type Alloys (Where X = Ni, Nd and Pr). Materials, 14.
Mukhachev, R.D., and Lukoyanov, A.V. (2021). Composition-Induced Magnetic Transition in GdMn1-xTixSi Intermetallic Compounds for x = 0–1. Metals, 11.