Large Eddy Simulation of the Transitional Flow Around the SD7003 Airfoil and Application to Blade–Vortex Interaction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Separation-Bubble-Transition Measurements on a Low-Re Airfoil Using Particle Image Velocimetry. Turbo Expo: Power for Land, Sea, and Air, vol. Volume 3: Turbo Expo 2005, Parts A and B (2005). https://doi.org/10.1115/GT2005-68663
Abbà, A., Bonaventura, L., Nini, M., Restelli, M.: Dynamic models for large eddy simulation of compressible flows with a high order DG method. Comput. Fluids 122, 209–222 (2015). https://doi.org/10.1016/j.compfluid.2015.08.021. http://www.sciencedirect.com/science/article/pii/S0045793015002972
Abbà, A., Bonaventura, L., Recanati, A., Tugnoli, M.: Dynamical p-adaptivity for les of compressible flows in a high order dg framework (2019)
Abdalla, I.E., Yang, Z.: Numerical study of the instability mechanism in transitional separating-reattaching flow. Int. J. Heat Fluid Flow 25(4), 593–605 (2004). https://doi.org/10.1016/j.ijheatfluidflow.2004.01.004. http://www.sciencedirect.com/science/article/pii/S0142727X04000062
Alam, M., Sandham, N.D.: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000). https://doi.org/10.1017/S0022112099008976
Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.: On the development of an implicit high-order discontinuous galerkin method for DNS and implicit LES of turbulent flows. Eur. J. Mech.- B/Fluids 55, 367 – 379 (2016). https://doi.org/10.1016/j.euromechflu.2015.08.010. http://www.sciencedirect.com/science/article/pii/S0997754615300303. Vortical Structures and Wall Turbulence
Bassi, F., Colombo, A., Crivellini, A., Fidkowski, K., Franciolini, M., Ghidoni, A., Noventa, G.: An entropy-adjoint p -adaptive discontinuous Galerkin method for the under-resolved simulation of turbulent flows (2019). https://doi.org/10.2514/6.2019-3418
Bernardos, L., Richez, F., Gleize, V., Gerolymos, G.A.: Prediction of separation-induced transition on the sd7003 airfoil using algebraic transition triggering. AIAA J. 57(9), 3812–3824 (2019). https://doi.org/10.2514/1.J058288
Bolemann, T., Beck, A., Flad, D., Frank, H., Mayer, V., Munz, C.D.: High-order discontinuous Galerkin schemes for large-Eddy simulations of moderate reynolds number flows, pp. 435–456. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-12886-3_20
Boom, P., Zingg, D.: Time-accurate flow simulations using an efficient newton-krylov-schur approach with high-order temporal and spatial discretization (2013). https://doi.org/10.2514/6.2013-383
Breuer, M.: Effect of inflow turbulence on an airfoil flow with laminar separation bubble: an LES study. Flow Turbul. Combust. 101(2), 433–456 (2018). https://doi.org/10.1007/s10494-017-9890-2
Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning piv measurements. Exp. Fluids 45, 675–691 (2008). https://doi.org/10.1007/s00348-008-0548-7
Catalano, P., Tognaccini, R.: Influence of free-stream turbulence on simulations of Laminar Separation Bubbles (2009). https://doi.org/10.2514/6.2009-1471
Catalano, P., Tognaccini, R.: Turbulence modeling for low-Reynolds-number flows. AIAA J. 48(8), 1673–1685 (2010). https://doi.org/10.2514/1.J050067
Catalano, P., Tognaccini, R.: Rans analysis of the low-reynolds number flow around the sd7003 airfoil. Aerospace Sci. Technol. 15(8), 615–626 (2011). https://doi.org/10.1016/j.ast.2010.12.006. http://www.sciencedirect.com/science/article/pii/S1270963810001616
Cimarelli, A., Leonforte, A., De Angelis, E., Crivellini, A., Angeli, D.: Resolved dynamics and subgrid stresses in separating and reattaching flows. Phys. Fluids 31(9), 095101 (2019). https://doi.org/10.1063/1.5110036
Crivellini, A.: Assessment of a sponge layer as a non-reflective boundary treatment with highly accurate gust-airfoil interaction results. Int. J. Comput. Fluid Dyn. 30(2), 176–200 (2016). https://doi.org/10.1080/10618562.2016.1167193
Droandi, G., Gibertini, G., Zanotti, A.: Perpendicular blade-vortex-interaction over an oscillating airfoil in light dynamic stall. J. Fluids Struct. 65, 472–494 (2016). https://doi.org/10.1016/j.jfluidstructs.2016.07.010. http://www.sciencedirect.com/science/article/pii/S0889974615300074
Felten, F., Lund, T.: Numerical simulation of parallel airfoil/vortex interaction using a zonal hybrid RANS/LES method (2005). https://doi.org/10.2514/6.2005-5127
Galbraith, M., Visbal, M.: Implicit large eddy simulation of low reynolds number flow past the sd7003 airfoil (2008). https://doi.org/10.2514/6.2008-225
Garmann, D.J., Visbal, M.R., Orkwis, P.D.: Comparative study of implicit and subgrid-scale model large-Eddy simulation techniques for low-Reynolds number airfoil applications. Int. J. Numer. Meth. Fluids 71(12), 1546–1565 (2013). https://doi.org/10.1002/fld.3725
Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale Eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)
Hain, R., Kahler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at low-Reynolds-number aerofoils. J. Fluid Mech. 630, 129–153 (2009). https://doi.org/10.1017/S0022112009006661
Herbst, S.L., Kähler, C.J., Hain, R.: Influence of large-scale free-stream turbulence on an SD7003 airfoil at low Reynolds numbers. (2018). https://doi.org/10.2514/6.2018-3490
Ilie, M.: A fully-coupled CFD/CSD computational approach for aeroelastic studies of helicopter blade-vortex interaction. Appl. Math. Comput. 347, 122–142 (2019). https://doi.org/10.1016/j.amc.2018.10.069
Ilie, M., Nitzche, F., Matida, E.: Two-dimensional Blade-Vortex interaction using large Eddy simulation (2007). https://doi.org/10.2514/6.2007-2066
Kompenhans, M., Rubio, G., Ferrer, E., Valero, E.: Comparisons of p-adaptation strategies based on truncation- and discretisation-errors for high order discontinuous galerkin methods. Comput. Fluids 139, 36 – 46 (2016). https://doi.org/10.1016/j.compfluid.2016.03.026. http://www.sciencedirect.com/science/article/pii/S0045793016300895. 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics—a special issue dedicated to the 60th birthday of Professor David Kopriva
Lodato, G., Domingo, P., Vervisch, L.: Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows. J. Comput. Phys. 227(10), 5105–5143 (2008). https://doi.org/10.1016/j.jcp.2008.01.038. http://www.sciencedirect.com/science/article/pii/S0021999108000685
Morvant, R., Badcock, K.K., Barakos, G.G.: Aerofoil-vortex interaction using the compressible vorticity confinement method. AIAA J. 43(1), 63–75 (2005). https://doi.org/10.2514/1.5177
Naddei, F.: Adaptive large eddy simulations based on discontinuous galerkin methods (2019)
Ol, M., McAuliffe, B., Hanff, E., Scholz, U., Kaehler, C.: Comparison of laminar separation bubble measurements on a low reynolds number airfoil in three facilities. In: 35th AIAA Fluid Dynamics Conference and Exhibit (2005). https://doi.org/10.2514/6.2005-5149
Piomelli, U., Cabot, W.H., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids A 3(7), 1766–1771 (1991). https://doi.org/10.1063/1.857956
Piomelli, U., Zang, T.A., Speziale, C.G., Hussaini, M.Y.: On the large Eddy simulation of transitional wall-bounded flows. Phys. Fluids A 2(2), 257–265 (1990). https://doi.org/10.1063/1.857774
Qin, S., Koochesfahani, M., Jaberi, F.: Large eddy simulations of unsteady flows over a stationary airfoil. Comput. Fluids 161, 155–170 (2018). https://doi.org/10.1016/j.compfluid.2017.11.014. http://www.sciencedirect.com/science/article/pii/S004579301730422X
Radespiel, R.E., Windte, J., Scholz, U.: Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J. 45(6), 1346–1356 (2007). https://doi.org/10.2514/1.25913
Restelli, M.: Femilaro: a finite element toolkit. https://bitbucket.org/mrestelli/femilaro/wiki/Home
Restelli, M., Giraldo, F.X.: A conservative discontinuous Galerkin semi-implicit formulation for the Navier-Stokes equations in nonhydrostatic mesoscale modeling. SIAM J. Sci. Comput. 31(3), 2231–2257 (2009). https://doi.org/10.1137/070708470
Rival, D., Manejev, R., Tropea, C.: Measurement of parallel blade-vortex interaction at low Reynolds numbers. Exp. Fluids 49, 89–99 (2010). https://doi.org/10.1007/s00348-009-0796-1
Rockwell, D.: Vortex-body interactions. Annu. Rev. Fluid Mech. 30(1), 199–229 (1998). https://doi.org/10.1146/annurev.fluid.30.1.199
Saathoff, P.J., Melbourne, W.H.: Effects of free-stream turbulence on surface pressure fluctuations in a separation bubble. J. Fluid Mech. 337, 1–24 (1997). https://doi.org/10.1017/S0022112096004594
Sarlak, H.: Large eddy simulation of an sd7003 airfoil: effects of Reynolds number and subgrid-scale modeling. J. Phys: Conf. Ser. 854, 012040 (2017). https://doi.org/10.1088/1742-6596/854/1/012040
Selig, M.: Summary of low speed airfoil data. No. v. 1 in summary of low speed airfoil data. SoarTech Publications (1995). https://books.google.it/books?id=qtIeAQAAIAAJ
Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment. Monthly Weather Rev. 91(3), 99–164 (1963)
Steinhoff, J., Raviprakash, G.: Navier-Stokes computation of blade-vortex interaction using vorticity confinement (1995). https://doi.org/10.2514/6.1995-161
Tanabe, Y., Saito, S., Takasaki, K., Fujita, H.: A parametric study of parallel blade-vortex-interaction noise. Noise Control Eng. J. (2009). https://doi.org/10.3397/1.3197849
Tanabe, Y., Saito, S., Yang, C., Aoyama, T., Benoit, C., Gretay, J., Jeanfaivre, G., Peron, S., Sides, J.: Inviscid numerical simulations of 2d parallel blade-vortex interaction JAXA/ONERA cooperation. Tech. Rep., Japan Aerospace Exploration Agency (JAXA) (2007)
Tugnoli, M.: Polynomial adaptivity for large eddy simulation of compressible turbulent flows (2017)
Tugnoli, M., Abbà, A., Bonaventura, L., Restelli, M.: A locally p-adaptive approach for large eddy simulation of compressible flows in a DG framework. J. Comput. Phys. (2016). https://doi.org/10.1016/j.jcp.2017.08.007
Uranga, A., Persson, P.O., Drela, M., Peraire, J.: Implicit large eddy simulation of transitional flows over airfoils and wings (2009). https://doi.org/10.2514/6.2009-4131
Wang, L., Gobbert, M.K., Yu, M.: A dynamically load-balanced parallel $$p$$-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation (2019)
Wilder, M., Telionis, D.: Parallel blade-vortex interaction. J. Fluids Struct. 12(7), 801–838 (1998). https://doi.org/10.1006/jfls.1998.0172. http://www.sciencedirect.com/science/article/pii/S0889974698901724
Zanotti, A., Ermacora, M., Campanardi, G., Gibertini, G.: Stereo particle image velocimetry measurements of perpendicular blade-vortex interaction over an oscillating airfoil. Exp. Fluids (2014). https://doi.org/10.1007/s00348-014-1811-8
