Laplacian graph eigenvectors

Linear Algebra and Its Applications - Tập 278 Số 1-3 - Trang 221-236 - 1998
Russell Merris1
1Department of Mathematics and Computer Science, California State University, Hayward, CA 94542, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anderson, 1985, Eigenvalues of the Laplacian of a graph, Linear and Multilinear Algebra, 18, 141, 10.1080/03081088508817681

Barnard, 1995, A spectral algorithm for envelope reduction of sparse matrices, J. Numer. Linear Algebra Appl., 2, 317, 10.1002/nla.1680020402

Botti, 1993, Almost all trees share a complete set of immanantal polynomials, J. Graph Theory, 17, 467, 10.1002/jgt.3190170404

Bussemaker, 1976, There are exactly 13 connected, cubic, integral graphs, Univ. Beograd Publ. Elektrotehn. Fak., Ser. Mat. Fiz., 544–576, 43

Cvetković, 1995

Cvetković, 1997, Eigenspaces of Graphs, 66

Faria, 1995, Multiplicity of integer roots of polynomials of graphs, Linear Algebra Appl., 229, 15, 10.1016/0024-3795(93)00337-Y

Fiedler, 1973, Algebraic connectivity of graphs, Czech. Math. J., 23, 298, 10.21136/CMJ.1973.101168

Fiedler, 1975, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech Math. J., 25, 619, 10.21136/CMJ.1975.101357

Grone, 1990, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl., 11, 218, 10.1137/0611016

Grone, 1990, Large eigenvalues of the Laplacian, Linear and Multilinear Algebra, 28, 45, 10.1080/03081089008818028

Hammer, 1996, Laplacian spectra and spanning trees of threshold graphs, Discrete Appl. Math., 65, 255, 10.1016/0166-218X(94)00049-J

McKay, 1977, On the spectral characteristics of trees, Ars Combin., 3, 219

Merris, 1994, Degree maximal graphs are Laplacian integral, Linear Algebra Appl., 199, 381, 10.1016/0024-3795(94)90361-1

Merris, 1996, Threshold graphs, 205

Merris, 1997

Merris, 1997, Large families of Laplacian isospectral graphs, Linear and Multilinear Algebra, 43, 201, 10.1080/03081089708818525

Moon, 1996, Almost all (0,1)-matrices are primitive, Studia Math. Hungar., 1, 153

Schwenk, 1978, Exactly thirteen connected cubic graphs have integral spectra, vol. 642, 516

West, 1996

Wolk, 1965, A note on the comparability graph of a tree, 16, 17