Laplace transformations as the only degenerate Darboux transformations of first order

Programming and Computer Software - Tập 38 Số 2 - Trang 105-108 - 2012
Ekaterina Shemyakova1
1Dorodnicyn Computing Center, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Darboux, G., Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal, vol. 2, Paris: Gauthier-Villars, 1915.

Tsarev, S.P., Generalized Laplace Transformations and Integration of Hyperbolic Systems of Linear Partial Differential Equations, Proc. of the 2005 Int. Symp. on Symbolic and Algebraic Computation, Beijing: ACM, 2005, pp. 325–331.

Tsarev, S.P., On Factorization and Solution of Multidimensional Linear Partial Differential Equations, Proc. of WSPC (In Honor of 60-th Birthday of Sergei Abramov), 2007, pp. 43–66.

Zhiber, A.V. and Startsev, S.Ya., Integrals, Solutions, and Existence of Laplace Transforms for a Linear Hyperbolic System of Equations, Mat. Zametki, 2003, vol. 74, no. 6, pp. 848–857 [Math. Notes (Engl. Transl.), 2003, vol. 74, no. 6, pp. 803–811].

Matveev, V. B. and Salle, M.A., Darboux Transformations and Solutions, Springer, 1991.

Startsev, S.Ya., Laplace’s Cascade Integration Method for Linear Hyperbolic Systems of Equations, Mat. Zametki, 2008, vol. 83, no. 1, pp. 107–118 [Math. Notes (Engl. Transl.), 2008, vol. 83, no. 1, pp. 97–106].

Shemyakova, E.S., X- and Y-Invariants of Partial Differential Operators in the Plane, Programming Comput. Software, 2011, vol. 37, no. 4, pp. 192–196.

Tsarev, S.P., On Darboux Integrable Nonlinear Partial Differential Equations, Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, 1999, vol. 225, pp. 389–399 [Proc. Steklov Inst. Math., (Engl. Transl.), 1999, vol. 225, pp. 372–381].

Tsarev, S.P. and Shemyakova, E.S., Differential Transformations of Parabolic Second-Order Operators in the Plane, Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk, 2009, vol. 266, pp. 227–236 [Proc. Steklov Inst. Math., (Engl. Transl.), 2009, vol. 266, pp. 219–227].