Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry
Tóm tắt
Từ khóa
Tài liệu tham khảo
Chang KT, Chiang SH, Hsu ML (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347
Furumura T (2016) Destructive near-fault strong ground motion from the 2016 Kumamoto prefecture, Japan, M7. 3 earthquake. Landslides 13:1519–1524
Geospatial Information Authority of Japan (2017) Landslide inventory maps triggered by the 2016 Kumamoto earthquake. Available via http://www.gsi.go.jp/BOUSAI/H27-kumamoto-earthquake-index.html (in Japanese). Accessed 17 June 2017
Hayakawa YS, Obanawa H, Saito H, Uchiyama S (2016) Geomorphological applications of structure-from-motion multi-view stereo photogrammetry: a review. Transactions, Japanese Geomorphological Union 37:1–30 (in Japanese with English abstract)
James LA, Hodgson ME, Ghoshal S, Latiolais MM (2012) Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology 137:181–198
James MR, Robson S, d'Oleire-Oltmanns S, Niethammer U (2017) Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology 280:51–66
Jan CD, Chen CL (2005) Debris flows caused by typhoon herb in Taiwan. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin Heidelberg, pp 539–563. https://doi.org/10.1007/3-540-27129-5_21
Keefer DK, Larsen MC (2007) Assessing landslide hazards. Science 316:1136–1138. https://doi.org/10.1126/science.1143308
Korup O, Görüm T, Hayakawa YS (2012) Without power? Landslide inventories in the face of climate change. Earth Surf Process Landf 37:92–99
Lin A, Satsukawa T, Wang M, Asl ZM, Fueta R, Nakajima F (2016) Coseismic rupturing stopped by Aso volcano during the 2016 mw 7.1 Kumamoto earthquake, Japan. Science 354(6314):869–874
Lin CW, Liu SH, Lee SY, Liu CC (2006) Impacts of the chi-chi earthquake on subsequent rainfall-induced landslides in central Taiwan. Eng Geol 86:87–101
Meunier P, Hovius N, Haines JA (2007) Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophys Res Lett 34:L20408. https://doi.org/10.1029/2007GL031337
Meunier P, Hovius N, Haines JA (2008) Topographic site effects and the location of earthquake-induced landslides. Earth Planet Sci Lett 275(3):221–232
Miyabuchi Y (2009) A 90,000-year tephrostratigraphic framework of Aso volcano, Japan. Sediment Geol 220:169–189
Miyabuchi Y (2016) Landslide disaster triggered by the 2016 Kumamoto earthquake in and around Minamiaso village, western part of Aso caldera, southwestern Japan. J Geogr (Chigaku Zasshi) 125:421–429 (in Japanse with English abstract)
Miyabuchi Y, Daimaru H (2004) The June 2001 rainfall-induced landslides and associated lahars at Aso volcano (southwestern Japan): implications for hazard assessment. Acta Vulcanol 16:21–36
Miyabuchi Y, Watanabe K (1997) Eruption ages of Holocene tephras from Aso volcano, southern Japan, inferred from 14C ages of buried andisols. Bulletin of the Volcanological Society of Japan 42:403–408 (in Japanese with English abstract)
Niethammer U, James MR, Rothmund S, Travelletti J, Joswig M (2012) UAV-based remote sensing of the super-Sauze landslide: evaluation and results. Eng Geol 128:2–11. https://doi.org/10.1016/j.enggeo.2011.03.012
Oguchi T, Hayakawa YS, Wasklewicz T (2011) Data sources. In: Smith MJ, Paron P, Griffiths JS (eds) Developments in earth surface processes: geomorphological mapping: methods and applications. Elsevier, pp 189–224
Ono K, Matsumoto Y, Miyahisa M, Teraoka Y, Kambe N (1977) Geology of the Taketa district. Geological Survey of Japan, p 145 (in Japanse with English abstract)
Owen L, Kamp U, Khattak GA, Harp E, Keefer D, Bauer MA (2008) Landslides triggered by the 8 October 2005 Kashmir earthquake. Geomorphology 94:1–9
Peternel T, Kumelj Š, Oštir K, Komac M (2017) Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides 14:395–406
Saito H, Korup O, Uchida T, Hayashi S, Oguchi T (2014) Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan. Geology 42:999–1002
Saito H, Matsuyama H (2015) Probable hourly precipitation and soil water index for 50-yr recurrence interval over the Japanese archipelago. Science Online Letters on the Atmosphere 11:118–123
Saito H, Nakayama D, Matsuyama H (2009) Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: the Akaishi Mountains, Japan. Geomorphology 109:108–121
Saito H, Uchiyama S, Obanawa H, Hayakawa YS (2016) Sediment yields triggered by heavy rainfall in July 2012 at Aso volcano: application of high-definition topography data using unmanned aerial vehicles and structure-from-motion multi-view stereo photogrammetry. Geographical Review of Japan Series A 89:347–359 (in Japanese with English abstract)
Sato HP, Sekiguchi T, Kojiroi R, Suzuki Y, Iida M (2005) Overlaying landslides distribution on the earthquake source, geological and topographical data: the mid Niigata prefecture earthquake in 2004, Japan. Landslides 2(2):143–152
Shimizu O, Ono M (2016) Relationship of tephra stratigraphy and hydraulic conductivity with slide depth in rainfall-induced shallow landslides in Aso volcano, Japan. Landslides 13:577–582
Song K, Wang F, Dai Z, Iio A, Osaka O, Sakata S (2017) Geological characteristics of landslides triggered by the 2016 Kumamoto earthquake in Mt. Aso volcano, Japan. Bull Eng Geol Environ:1–10
Tang C, Zhu J, Qi X, Ding J (2011) Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: a case study in the Beichuan area of China. Eng Geol 122(1):22–33