Landslide susceptibility mapping on a global scale using the method of logistic regression
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alimohammadlou, Y., Najafi, A., and Gokceoglu, C.: Estimation of rainfall-induced landslides using ANN and fuzzy clustering methods: A case study in Saeen Slope, Azerbaijan province, Iran, Catena, 120, 149–162, https://doi.org/10.1016/j.catena.2014.04.009, 2014.
Allison, P. D.: Logistic regression using the SAS system: theory and application, Wiley Interscience, New York, 2001.
Anbalagan, R.: Landslide hazard evaluation and zonation mapping in mountainous terrain, Eng. Geol., 32, 269–277, https://doi.org/10.1016/0013-7952(92)90053-2, 1992.
Atkinson, P. M. and Massari, R.: Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy, Comput. Geosci., 24, 373–385, https://doi.org/10.1016/s0098-3004(97)00117-9, 1998.
Ayalew, L. and Yamagishi, H.: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan, Geomorphology, 65, 15–31, https://doi.org/10.1016/j.geomorph.2004.06.010, 2005.
Ayalew, L., Yamagishi, H., and Ugawa, N.: Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan, Landslides, 1, 73–81, https://doi.org/10.1007/s10346-003-0006-9, 2004.
Bai, S. B., Wang, J., Lu, G. N., Zhou, P. G., Hou, S. S., and Xu, S. N.: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China, Geomorphology, 115, 23–31, https://doi.org/10.1016/j.geomorph.2009.09.025, 2010.
Bednarik, M., Magulová, B., Matys, M., and Marschalko, M.: Landslide susceptibility assessment of the Kral'ovany-Liptovský Mikuláš railway case study, Phys. Chem. Earth Pt. A/B/C, 35, 162–171, 2010.
Bouysse, P.: Explanatory Notes: The Geological Map of the World at 1 : 50 000 000, third Edn., Commission for the Geological Map of the World publishing, http://ccgm.org/img/cms/Expl Notes Geol Map World.pdf (last access: 27 October 2016), 2010.
Brenning, A.: Spatial prediction models for landslide hazards: review, comparison and evaluation, Nat. Hazards Earth Syst. Sci., 5, 853–862, https://doi.org/10.5194/nhess-5-853-2005, 2005.
Budimir, M. E. A., Atkinson, P. M., and Lewis, H. G.: A systematic review of landslide probability mapping using logistic regression, Landslides, 12, 419–436, https://doi.org/10.1007/s10346-014-0550-5, 2015.
Caine, N.: The rainfall intensity-duration control of shallow landslides and debris flows, Geogr. Ann., 62, 23–27, 1980.
Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V., and Reichenbach, P.: GIS techniques and statistical models in evaluating landslide hazard, Earth. Surf. Proc. Land., 16, 427–445, 1991.
CGMW (Commission for the Geological Map of the World): Geological Map of the World at 1 : 25 000 000, http://ccgm.org/en/maps/93-carte-geologique-du-monde-a-125-000-000-9782917310045.html (last access: 27 October 2016), 2010.
Chang, K. T., Chiang, S. H., and Hsu, M. L.: Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89, 335–347, https://doi.org/10.1016/j.geomorph.2006.12.011, 2007.
Chau, K. T. and Chan, J. E.: Regional bias of landslide data in generating susceptibility maps using logistic regression: Case of Hong Kong Island, Landslides, 2, 280–290, https://doi.org/10.1007/s10346-005-0024-x, 2005.
Chauhan, S., Mukta, S., and Arora, M. K.: Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model, Landslides, 7, 411–423, https://doi.org/10.1007/s10346-010-0202-3, 2010.
Costanzo, D., Chacon, J., Conoscenti, C., Irigaray, C., and Rotigliano, E.: Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy), Landslides, 11, 639–653, https://doi.org/10.1007/s10346-013-0415-3, 2014.
Cruden, D. M. and Varnes, D. J.: Landslide types and processes, in: Landslides investigation and mitigation, edited by: Turner, A. K. and Schuster, R. L., National Academy, Washington, 1996.
Dai, F. C. and Lee, C. F.: Landslide characteristics and, slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42, 213–228, https://doi.org/10.1016/s0169-555x(01)00087-3, 2002.
Dhakal, A. S., Amada, T., and Aniya, M.: Landslide hazard mapping and the application of GIS in the Kulekhani watershed, Nepal, Mt. Res. Dev., 19, 3–16, https://doi.org/10.2307/3674109, 1999.
Ercanoglu, M. and Gokceoglu, C.: Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach, Environ. Geol., 41, 720–730, https://doi.org/10.1007/s00254-001-0454-2, 2002.
Erener, A. and Duzgun, H. S. B.: Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway), Landslides, 7, 55–68, https://doi.org/10.1007/s10346-009-0188-x, 2010.
Farahmand, A. and AghaKouchak, A.: A satellite-based global landslide model, Nat. Hazards Earth Syst. Sci., 13, 1259–1267, https://doi.org/10.5194/nhess-13-1259-2013, 2013.
Felicisimo, A., Cuartero, A., Remondo, J., and Quiros, E.: Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study, Landslides, 10, 175–189, https://doi.org/10.1007/s10346-012-0320-1, 2013.
Galli, M. and Guzzetti, F.: Landslide vulnerability criteria: A case study from Umbria, central Italy, Environ. Manage., 40, 649–664, https://doi.org/10.1007/s00267-006-0325-4, 2007.
Gao, J.: A summary of world natural disasters in 1998, Disaster reduction in China, 9, 52–58, 1999 (in Chinese)
Giardini, D., Grünthal, G., Shedlock, K. M., and Zhang, P.: The GSHAP global seismic hazard map, in: International handbook of earthquake and engineering seismology, International Geophysics Series 81 B, edited by: Lee, W., Kanamori, H., Jennings, P., and Kisslinger, C., Academic Press, Amsterdam, 1233–1239, http://www.gfz-potsdam.de/GSHAP (last access: 27 October 2016), 2003.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/s0169-555x(99)00078-1, 1999.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.: Estimating the quality of landslide susceptibility models, Geomorphology, 81, 166–184, https://doi.org/10.1016/j.geomorph.2006.04.007, 2006.
Hong, Y., Adler, R., and Huffman, G.: Use of satellite remote sensing data in the mapping of global landslide susceptibility, Nat. Hazards, 43, 245–256, https://doi.org/10.1007/s11069-006-9104-z, 2007.
Jarvis, A., Reuter, H., Nelson, A., and Guevara, E.: Hole-filled SRTM for the globe version 4, technical report, the CGIAR-CSI SRTM 90 m Database, http://srtm.csi.cgiar.org (last access: 27 October 2016), 2012.
Kawabata, D. and Bandibas, J.: Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN), Geomorphology, 113, 97–109, https://doi.org/10.1016/j.geomorph.2009.06.006, 2009.
Kirschbaum, D. B., Adler, R., Hong, Y., Hill, S., and Lerner-Lam, A.: A global landslide catalog for hazard applications: method, results, and limitations, Nat. Hazards, 52, 561–575, https://doi.org/10.1007/s11069-009-9401-4, 2010.
Lee, S.: Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals, Int. J. Remote Sens., 26, 1477–1491, https://doi.org/10.1080/01431160412331331012, 2005.
Lee, S. and Min, K.: Statistical analysis of landslide susceptibility at Yongin, Korea, Environ. Geol., 40, 1095–1113, 2001.
Lin, Q., Wang, Y., Liu, T., Zhu, Y., and Sui, Q.: The vulnerability of people to landslides: a case study on the relationship between the casualties and volume of landslides in China, Int. J. Environ. Res. Public Health, 14, 212, https://doi.org/10.3390/ijerph14020212, 2017.
Liu, C., Li, W., Wu, H., Lu, P., Sang, K., Sun, W., Chen, W., Hong, Y., and Li, R.: Susceptibility evaluation and mapping of china's landslides based on multi-source data, Nat. Hazards, 69, 1477–1495, 2013.
Mathew, J., Jha, V. K., and Rawat, G. S.: Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method, Landslides, 6, 17–26, https://doi.org/10.1007/s10346-008-0138-z, 2009.
Matsuura, S., Asano, S., and Okamoto, T.: Relationship between rain and/or meltwater, pore-water pressure and displacement of a reactivated landslide, Eng. Geol., 101, 49–59, https://doi.org/10.1016/j.enggeo.2008.03.007, 2008.
Mora, S. and Vahrson, W.: Macrozonation methodology for landslide hazard determination, Bull. Assoc. Eng. Geol., 31, 49–58, 1994.
Nadim, F., Kjekstad, O., Peduzzi, P., Herold, C., and Jaedicke, C.: Global landslide and avalanche hotspots, Landslides, 3, 159–173, https://doi.org/10.1007/s10346-006-0036-1, 2006.
Nowicki, M. A., Wald, D. J., Hamburger, M. W., Hearne, M., and Thompson, E. M.: Development of a globally applicable model for near real-time prediction of seismically induced landslides, Eng. Geol., 173, 54–65, https://doi.org/10.1016/j.enggeo.2014.02.002, 2014.
Pachauri, A. K. and Pant, M.: Landslide hazard mapping based on geological attributes, Eng. Geol., 32, 81–100, https://doi.org/10.1016/0013-7952(92)90020-y, 1992.
Regmi, N. R., Giardino, J. R., McDonald, E. V., and Vitek, J. D.: A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA, Landslides, 11, 247–262, https://doi.org/10.1007/s10346-012-0380-2, 2014.
Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Rudolf, B., and Ziese, M.: GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data, https://doi.org/10.5676/DWD_GPCC/FD_M_V6_050, 2011.
Terlien, M. T. J., Van Asch, T. W. J., and Van Westen, C. J.: Deterministic modelling in GIS-based landslide hazard assessment, in: Geographical information systems in assessing natural hazards, edited by: Carrara, A. and Guzzetti, F., Kluwer Academic Publishing, the Netherlands, 57–77, 1995.
Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., and Tehrany, M. S.: Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia, Catena, 118, 124–135, https://doi.org/10.1016/j.catena.2014.02.005, 2014.
USGS: GTOPO30 readme, https://lta.cr.usgs.gov/GTOPO30 (last access: 27 October 2016), 2012.
Van Den Eeckhaut, M., and Hervás, J.: State of the art of national landslide databases in Europe and their potential for assessing susceptibility, hazard and risk, Geomorphology, 139, 545–558, 2012.
Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., and Vandekerckhove, L.: Prediction of landslide susceptibility using rare events logistic regression: A case-study in the Flemish Ardennes (Belgium), Geomorphology, 76, 392–410, https://doi.org/10.1016/j.geomorph.2005.12.003, 2006.
Van Den Eeckhaut, M., Hervas, J., Jaedicke, C., Malet, J. P., Montanarella, L., and Nadim, F.: Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data, Landslides, 9, 357–369, https://doi.org/10.1007/s10346-011-0299-z, 2012.
Varnes, D. J.: Landslide hazard zonation: a review of principles and practice, UNESCO, Paris, 1984.
Wang, Y., Song, C., Lin, Q., and Li, J.: Occurrence probability assessment of earthquake-triggered landslides with Newmark displacement values and logistic regression: The Wenchuan earthquake, China, Geomorphology, 258, 108–119, 2016.
Willmott, C. J. and Feddema, J. J.: A more rational climatic moisture index, Prof. Geogr., 44, 84–88, 1992.