Landscape evolution in Africa during the Cenozoic and Quaternary—the legacy and limitations of Lester C. King

Canadian Journal of Earth Sciences - Tập 53 Số 11 - Trang 1089-1102 - 2016
Kevin Burke1,2,3, M. Justin Wilkinson4,5
1Crosby Lecturer, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204-5007, USA
3School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
4Department of Geography, Texas State University, San Marcos, Texas, USA.
5Jacobs contract at NASA–Johnson Space Center, Houston TX 77058, USA.

Tóm tắt

African landscape evolution since 66 Ma reflects interactions among parts of the Earth system from the Core to the Biosphere. We stress changes in those interactions in three events that have dominated landscape development: (i) a climatic revolution when the circumpolar current and the East Antarctic ice sheet first formed ∼37 Ma; (ii) a tectonic revolution at ∼32 Ma dominated by elevation of ∼30 topographic structural swells continent-wide; and (iii) a second climatic revolution in a Northern Hemisphere cooling event (at ∼2.7 Ma) that triggered Sahara desert initiation and the beginning of glacial cycles in the Northern Hemisphere (∼2.15 Ma). We recognize the following distinct features of the great Afro-Arabian continent (∼40 M km2) that show its relationship to Earth structure and processes: deep mantle structure and dynamics, plate motion with respect to that structure, especially plate-arrest (∼32 Ma). The topographic, erosional, geomorphic, and depositional modifications following that tectonic event were strongly influenced by changes around the continent in oceanic and atmospheric circulation that affected the entire continent. Atmospheric circulation changes since ∼34 Ma have involved zonal winds, the ITCZ, desert formation and destruction, the evolution of the persistent (since ∼35 Ma) Antarctic ice sheet, and since ∼2 Ma of the rapidly cycling Eurasian ice sheets. We explain that a widely supported idea that ancient erosion surfaces have survived at high elevations in Africa is the result of a failure to recognize that the present elevations of the continent’s swells are dynamically maintained, but do not display a thermochronological signature because they are young (less than ∼32 My), so that conduction of heat from shallow convection cells has not yet reached the Earth’s surface.

Từ khóa


Tài liệu tham khảo

10.1038/nature08706

10.1130/GSATG206A.1

Boudouresque L., 1982, Bulletin de la Société Géologique de France, 24, 685, 10.2113/gssgfbull.S7-XXIV.4.685

10.1130/G23369A.1

10.1007/BF01764011

Burke K., 1972, Bulletin American Association Petroleum Geologists, 56, 1975

10.1016/0040-1951(76)90016-0

Burke K., 1996, South African Journal of Geology, 99, 341

10.1086/319977

10.1139/cjes-2013-0115

10.1038/249313a0

Burke K., 1971, Zeitschrift für Geomorphologie, 15, 430, 10.1127/zfg/15/1972/430

Burke, K., and Gunnell, Y. 2008. The African Surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geological Society of America, Memoir201. Boulder, Colorado, 66 pp.

10.1038/239387b0

10.1038/physci233051a0

10.1144/GSL.SP.2003.207.3

10.1016/j.epsl.2007.09.042

10.2113/gssajg.114.3-4.489

10.1130/GSAB-17-377

De Wit, M.C.J. 1993. Cainozoic evolution of drainage systems in the north-western Cape. Unpublished Ph.D. Thesis, Department of Geology, University of Cape Town, 348 pp.

10.2113/gssajg.112.2.89

10.1126/science.270.5233.53

10.1144/GSL.SP.1992.064.01.22

Du Toit, A., 1933, South African Geographical Journal, 16, 3

10.1016/0012-821X(84)90043-8

10.1130/G33172.1

10.1130/G30980.1

10.1029/95TC02744

10.2307/621126

Giresse P., 1982, Science Géologique Bulletin (Strasbourg), 35, 183, 10.3406/sgeol.1982.1620

10.1016/j.jafrearsci.2005.07.009

10.1016/B978-0-444-59425-9.01001-5

Granger D.E., 2013, Geological Society of America, Bulletin, 125, 1379, 10.1130/B30774.1

10.1111/j.1365-2117.2011.00511.x

10.1016/S0040-1951(97)00212-6

10.2110/jsr.2010.016

10.1038/39853

Holmes, A. 1944. Principles of Physical Geology. Thomas Nelson & Sons, Edinburgh, 532 pp.

10.1126/science.273.5278.1091

10.1111/j.1365-2117.2011.00500.x

King, L.C. 1942. South African Scenery. Oliver and Boyd, London and Edinburgh, 340 pp.

King, L.C. 1951. South African Scenery (2nd edition). Oliver and Boyd, London and Ediburgh, 379 pp.

Krenkel, E. 1922. Die Bruchzonen Ostafrikas: Tektonik, Vulkanismus, Erdbeben und Schwereanomalien. Gebrüder Borntraeger Verlag, Berlin, 184 pp.

Lageat Y., 1984, Transactions of the Geological Society of South Africa, 87, 141

Lancaster, N. 2013. Geomorphology of Desert Dunes. Routledge, New York.

Leroux, M. 1996. La Dynamique du Temps et du Climat. Masson, Paris, 310 pp.

Madge D.S., 1969, Pedobiologia, 9, 188, 10.1016/S0031-4056(23)00517-6

10.2113/gssajg.116.1.1

10.1111/j.1365-246X.1975.tb05855.x

McMillan I.K., 1990, Communications of the Geological Survey of Namibia, 6, 23

McMillan I.K., 2003, South African Journal of Science, 99, 537

Miller, R.McG. 1997. Ch. 11: The Owambo Basin of northern Namibia.InAfrican Basins, Sedimentary basins of the World: Volume 3.Edited byR.C. Selley. Elsevier, Amsterdam.pp. 237–268.

10.1029/2006GC001248

10.2113/gssajg.112.1.65

10.1029/94GL00631

Ollier C.D., 1985, Zeitschrift für Geomorphologie, Supplement-Band, 54, 37

Partridge T.C., 1987, South African Journal of Geology, 90, 179

Paton, T.R., Humphreys, G.S., and Mitchell, P.B. 1995. Soils: A New Global View. Yale University Press, Cambridge, MA, 209 pp.

10.1002/2013TC003479

10.1130/G34735.1

10.1016/j.tecto.2012.08.026

10.1038/nature13230

10.1146/annurev.ea.15.050187.002305

Rowley, D.B., Forte, A.M., Moucha, R., Mitrovica, J.X., Simmons, N.A., and Grand, S.P. 2013. Dynamic Topography Change of the Eastern United States Since 3 Million Years Ago. Science. 10.1126/science.1229180.

10.1029/TC007i001p00125

Saxe, J.G. 1881. Poems. Houghton, Mifflin and Co., Boston, Highgate edition.

10.1130/0-8137-2352-3.183

10.1016/j.crte.2009.03.008

10.1130/G34797.1

10.1016/j.tecto.2007.10.009

10.1073/pnas.1318135111

10.1130/0-8137-2332-9.407

10.1016/0037-0738(88)90094-2

Ward J.D., 1983, South African Journal of Science, 79, 175

Wilkinson, M.J., and Aleixo, A. (in press). Land surface evolution and avifaunal diversification in Amazonia.InMegafans: A Global Survey.Edited byM.J. Wilkinson and E. Latrubesse. Cambridge University Press, Cambridge, UK.

Wilkinson, M.J., and Burke, K. (in press). Megafans of Africa and their tectonic setting.InMegafans: A Global Survey.Edited byM.J. Wilkinson and E. Latrubesse. Cambridge University Press, Cambridge, UK.

Wilkinson, M.J., and Latrubesse, E. (in press). Introduction.InMegafans: A Global Survey.Edited byM.J. Wilkinson and E. Latrubesse. Cambridge University Press, Cambridge, UK.

10.1016/j.jsames.2005.08.002

Wilkinson, M.J., Marshall, L.G., Lundberg, J.G., and Kreslavsky, M.H. 2010. Megafan environments in northern South America and their impact on Amazon Neogene ecosystems.InAmazonia, Landscape and Species Evolution.Edited byC. Hoorn and F.P. Wesselingh. Blackwell, Chichester, UK, pp. 162–184.

Wilkinson, M.J., Miller, R.McG., Eckardt, F., and Kreslavsky, M.H. (in press). Megafans of the northern Kalahari Basin.InMegafans: A Global Survey.Edited byM.J. Wilkinson and E. Latrubesse. Cambridge University Press, Cambridge UK.