Cấu trúc cảnh quan là yếu tố chính điều khiển đa dạng thuế phân và chức năng của các loài chim ăn quả nhiệt đới

Springer Science and Business Media LLC - Tập 36 - Trang 2535-2547 - 2021
Fernando César Gonçalves Bonfim1, Pavel Dodonov1,2, Eliana Cazetta1
1Graduate Program in Ecology and Biodiversity Conservation, Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
2Spatial Ecology Lab, Institute of Biology, Federal University of Bahia, Salvador, Brazil

Tóm tắt

Sự thay đổi về sử dụng và che phủ đất do con người gây ra ảnh hưởng đến đa dạng sinh học trên toàn cầu. Tuy nhiên, các nhóm sinh thái bị ảnh hưởng khác nhau bởi thành phần và cấu hình của cảnh quan. Việc hiểu rõ nhóm nào bị ảnh hưởng tiêu cực và nhóm nào phát triển trong các hệ sinh thái bị biến đổi bởi con người là cực kỳ quan trọng trong quản lý bảo tồn, đặc biệt là đối với các loài như chim ăn quả, vốn đóng vai trò thiết yếu trong việc phát tán hạt. Chúng tôi đã đánh giá tầm quan trọng tương đối của thành phần và cấu hình cảnh quan, giải thích sự đa dạng thuế phân và chức năng cùng với ảnh hưởng của chúng đến các loài chim ăn quả trong Rừng Atlantic Brasil. Chúng tôi đã sử dụng một bộ dữ liệu mạnh mẽ bao gồm 153 mảnh rừng trong điểm nóng của Rừng Atlantic. Chúng tôi phân loại các loài là chim ăn quả dựa trên tỷ lệ phần trăm trái cây trong chế độ ăn uống và sử dụng các đặc tính chức năng liên quan đến việc phát tán hạt để đo lường đa dạng chức năng. Kết quả của chúng tôi cho thấy rằng thành phần cảnh quan quan trọng hơn cấu hình cảnh quan trong việc giải thích sự đa dạng thuế phân và chức năng của các loài chim ăn quả. Thêm vào đó, sự tương tác giữa thành phần và cấu hình cảnh quan giải thích cho sự mất mát các đặc tính chức năng. Chúng tôi chứng minh tầm quan trọng không t пропortion của thành phần cảnh quan trong việc giải thích sự đa dạng thuế phân và chức năng của các loài chim ăn quả, trong khi đó, các đặc tính liên quan đến việc phát tán hạt được giải thích bởi cả các biến compositional và configurational. Do đó, chúng tôi nhấn mạnh sự cần thiết phải duy trì một số lượng lớn môi trường sống để tăng cường sự đa dạng thuế phân và chức năng của các loài chim ăn quả. Tuy nhiên, sự tương tác giữa thành phần và cấu hình cảnh quan là cực kỳ quan trọng để duy trì các đặc tính chức năng của loài ăn quả trong các cảnh quan rừng nhiệt đới.

Từ khóa

#thành phần cảnh quan #cấu hình cảnh quan #chim ăn quả #đa dạng sinh học #bảo tồn #Rừng Atlantic Brasil

Tài liệu tham khảo

Andrén H (1994) Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366 Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA, Stoner KE (2016) Landscape composition is more important than landscape configuration for phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92 Barlow J, França F, Gardner Hicks CC, Lennox GD, Berenguer E, Castello L, Economo EP, Ferreira J, Guénard B, Gontijo Leal C, Isaac V, Lees AC, Parr CL, Wilson SK, Young PJ, Graham NAJ (2018) The future of hyperdiverse tropical ecosystems. Nature 559:517–526 Barton K (2019) MuMIn: Multi-Model Inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression analysis of spatial data. Ecol Lett 13:246–264 Bello C, Galetti M, Montan D, Pizo MA, Mariguela TC, Culot L, Bufalo F, Labecca F, Pedrosa F, Constantini R, Emer C, Silva WR, da Silva FR, Ovaskainen O, Jordano P (2017) Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic Forest. Ecology 98:1729 Bibby CJ, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, New York Boesing AL, Nichols E, Metzger JP (2018) Biodiversity extinction thresholds are modulated by matrix type. Ecography (cop) 41:1520–1533 Bolker B, R Development Core Team (2020). bbmle: Tools for General Maximum Likelihood Estimation. R package version 1.0.23.1. https://CRAN.R-project.org/package=bbmle Boscolo D, Metzger JP (2009) Is bird incidence in Atlantic forest fragments influenced by landscape patterns at multiple scales? Landsc Ecol 24:907–918 Bovo AAA, Ferraz KMPMB, Magioli M, Alexandrino ER, Hasui É, Ribeiro MC, Tobias JA (2018) Habitat fragmentation narrows the distribution of avian functional traits associated with seed dispersal in tropical forest. Perspect Ecol Conserv 16:90–96 Bregman TP, Lees AC, MacGregor HEA, Darski B, de Moura NG, Aleixo A, Barlow J, Tobias JA (2016) Using avian functional traits to assess the impact of land-cover change on ecosystem processes linked to resilience in tropical forests. Proc R Soc B Biol Sci 283:20161289 Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126 Chapman PM, Tobias JA, Edwards DP, Davies RG (2018) Contrasting impacts of land-use change on phylogenetic and functional diversity of tropical forest birds. J Appl Ecol 55:1604–1614 Coelho MTP, Raniero M, Silva MI, Hasui É (2016) The effects of landscape structure on functional groups of Atlantic forest birds. Wilson J Ornithol 128:520–534 Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, Mcclean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (cop) 36:27–46 Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175 Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142 Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23 Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40:1649–1663 Fahrig L, Arroyo-Rodríguez V, Bennett JR, Boucher-Lalonde V, Cazetta E, Currie DJ, Eigenbrod F, Ford AT, Harrison SP, Jaeger JAG, Koper N, Martin AE, Martin JL, Metzger JP, Morrison P, Rhodes JR, Saunders DA, Simberloff D, Smith AC, Tischendorf L, Vellend M, Watling JI (2019) Is habitat fragmentation bad for biodiversity? Biol Conserv 230:179–186 Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biol Conserv 226:9–15 Galán-Acedo C, Arroyo-Rodríguez V, Cudney-Valenzuela SJ, Fahrig L (2019) A global assessment of primate responses to landscape structure. Biol Rev 94:1605–1618 Godet L, Devictor V, Burel F, Robin J-G, Ménanteau L, Fournier J (2016) Extreme landscapes decrease taxonomic and functional bird diversity but promote the presence of rare species. Acta Ornithol 51:23–38 Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621 Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83:2091–2096 Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:1–10 Hasui É, Metzger JP, Pimentel R, Silveira LF, Bovo AAdA, Martensen AC, Uezu A, Regolin AL, Bispo de Oliveira A, Gatto CAFR, Duca C, Andretti CB, Banks-Leite C, Luz D, Mariz D, Alexandrino ER, de Barros FM, Martello F, Pereira IMS, da Silva JN, Ferraz KMPMdB, Naka LN, dos Anjos L, Efe MA, Pizo MA, Pichorim M, Gonçalves MSS, Cordeiro PHC, Dias RA, Muylaert RdL, Rodrigues RC, da Costa TVV, Cavarzere V, Tonetti VR, Silva WR, Jenkins CN, Galetti M, Ribeiro MC (2018) Atlantic birds: a data set of bird species from the Brazilian Atlantic Forest. Ecology 99:497 Hatfield JH, Harrison MLK, Banks-Leite C (2018) Functional diversity metrics: how they are affected by landscape change and how they represent ecosystem functioning in the tropics. Curr Landsc Ecol Rep 3:35–42 Joly CA, Metzger JP, Tabarelli M (2014) Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives. New Phytol 204:459–473 Jordano P (2014) Fruits and frugivory. In: Gallagher RS (ed) Seeds: the ecology of regeneration in plant communities, 3rd edn. CAB International, London, pp 18–61 Jordano P, Schupp EW (2000) Seed disperser effectiveness: the quantity component and patterns of seed rain for Prunus mahaleb. Ecol Monogr 70:591–615 Jung M (2016) LecoS: a python plugin for automated landscape ecology analysis. Ecol Inform 31:18–21 Kissling WD, Böhning-Gaese K, Jetz W (2009) The global distribution of frugivory in birds. Glob Ecol Biogeogr 18:150–162 Klingbeil BT, Willig MR (2009) Guild-specific responses of bats to landscape composition and configuration in fragmented Amazonian rainforest. J Appl Ecol 46:203–213 Kormann UG, Hadley AS, Tscharntke T, Betts MG, Robinson WD, Scherber C (2018) Primary rainforest amount at the landscape scale mitigates bird biodiversity loss and biotic homogenization. J Appl Ecol 55:1288–1298 Kupsch D, Vendras E, Ocampo-Ariza C, Batáry P, Motombi FN, Bobo KS, Waltert M (2019) High critical forest habitat thresholds of native bird communities in Afrotropical agroforestry landscapes. Biol Conserv 230:20–28 Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305 Laliberté E, Legendre P, Shipley B (2014) Package FD – measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. Version1.0–12 Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116 MacArthur R, MacArthur J (1961) On bird species diversity. Ecology 42:594–598 MapBiomas – Coleção [3.1] da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. http://www.mapbiomas.org. Accessed 14 June 2019 Martensen AC, Ribeiro MC, Banks-Leite C, Prado PI, Metzger JP (2012) Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conserv Biol 26:1100–1111 Mason NWH, De Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci 24:794–806 Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118 Matuoka MA, Benchimol M, Morante-Filho JC (2020) Tropical forest loss drives divergent patterns in functional diversity of forest and non-forest birds. Biotropica 52:738–748 McConkey KR, Prasad S, Corlett RT, Campos-Arceiz A, Brodie JF, Rogers H, Santamaria L (2012) Seed dispersal in changing landscapes. Biol Conserv 146:1–13 Menezes I, Cazetta E, Morante-Filho JC, Faria D (2016) Forest cover and bird diversity: drivers of fruit consumption in forest interiors in the Atlantic Forest of Southern Bahia, Brazil. Trop Conserv Sci 9:549–562 Merckx T, Dantas de Miranda M, Pereira HM (2019) Habitat amount, not patch size and isolation, drives species richness of macro-moth communities in countryside landscapes. J Biogeogr 46:956–967 Morante-Filho JC, Arroyo-Rodríguez V, de Andrade ER, Santos BA, Cazetta E, Faria D (2018a) Compensatory dynamics maintain bird phylogenetic diversity in fragmented tropical landscapes. J Appl Ecol 55:256–266 Morante-Filho JC, Arroyo-Rodríguez V, Pessoa MS, Cazetta E, Faria D (2018b) Direct and cascading effects of landscape structure on tropical forest and non-forest frugivorous birds. Ecol Appl 28:2024–2032 Morante-Filho JC, Faria D, Mariano-Neto E, Rhodes J (2015) Birds in anthropogenic landscapes: the responses of ecological groups to forest loss in the Brazilian Atlantic forest. PLoS ONE 10:1–18 Moreira-Lima L (2014) Aves da Mata Atlântica: riqueza, composicão, status, endemismos e conservacão. Dissertation, Universidade de São Paulo Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876 Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858 Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SLL, Hoskins AJ, Lysenko I, Phillips HRP, Burton VJ, Chng CWT, Emerson S, Gao D, Hale GP, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JPW, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291 Pardini R, de Bueno AA, Gardner TA, Prado PI, Metzger JP (2010) Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE. https://doi.org/10.1371/journal.pone.0013666 Pessoa MS, Hambuckers A, Benchimol M, Rocha-Santos L, Bomfim JA, Faria D, Cazetta E (2017a) Deforestation drives functional diversity and fruit quality changes in a tropical tree assemblage. Perspect Plant Ecol Evol Syst 28:78–86 Pessoa MS, Rocha-Santos L, Talora DC, Faria D, Mariano-Neto E, Hambuckers A, Cazetta E (2017b) Fruit biomass availability along a forest cover gradient. Biotropica 49:45–55 Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecol Lett 9:741–758 Plass-Johnson JG, Taylor MH, Husain AAA, Teichberg MC, Ferse SCA (2016) Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLoS ONE 11:1–18 Podani J, Schmera D (2006) On dendrogram-based measures of functional diversity. Oikos 115:179–185 Prescott GW, Gilroy JJ, Haugaasen T, Medina Uribe CA, Foster WA, Edwards DP (2016) Reducing the impacts of Neotropical oil palm development on functional diversity. Biol Conserv 197:139–145 Püttker T, Crouzeilles R, Almeida-Gomes M, Schmoeller M, Maurenza D, Alves-Pinto H, Pardini R, Vieira MV, Banks-Leite C, Fonseca CR, Metzger JP, Accacio GM, Alexandrino ER, Barros CS, Bogoni JA, Boscolo D, Brancalion PHS, Bueno AA, Cambui ECB, Canale GR, Cerqueira R, Cesar RG, Colletta GD, Delciellos AC, Dixo M, Estavillo C, Esteves CF, Falcão F, Farah FT, Faria D, Ferraz KMPMB, Ferraz SFB, Ferreira PA, Graipel ME, Grelle CEV, Hernández MIM, Ivanauskas N, Laps RR, Leal IR, Lima MM, Lion MB, Magioli M, Magnago LFS, Mangueira JRAS, Marciano-Jr E, Mariano-Neto E, Marques MCM, Martins SV, Matos MA, Matos FAR, Miachir JI, Morante-Filho JM, Olifiers N, Oliveira-Santos LGR, Paciencia MLB, Paglia AP, Passamani M, Peres CA, Pinto Leite CM, Porto TJ, Querido LCA, Reis LC, Rezende AA, Rigueira DMG, Rocha PLB, Rocha-Santos L, Rodrigues RR, Santos RAS, Santos JS, Silveira MS, Simonelli M, Tabarelli M, Vasconcelos RN, Viana BF, Vieira Emerson M, Prevedello JA (2020) Indirect effects of habitat loss via habitat fragmentation: a cross-taxa analysis of forest-dependent species. Biol Conserv 241:108368 QGIS Development Team (2016) QGIS Geographic Information System. Version 3.4.13. Open Source Geospatial Foundation Project. Retrieved from https://www.qgis.org R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/ Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, Tabarelli M, Fonseca GA, Mittermeier RA (2018) From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspect Ecol Conserv 16:208–214 Rocha-Santos L, Benchimol M, Mayfield MM, Faria D, Pessoa MS, Talora DC, Mariano-Neto E, Cazetta E (2017) Functional decay in tree community within tropical fragmented landscapes: Effects of landscape-scale forest cover. PLoS ONE 12:1–18 Rodrigues RC, Hasui É, Assis JC, Pena JCC, Muylaert RL, Tonetti VR, Martello F, Regolin AL, Costa TVV, Pichorim M, Carrano E, Lopes LE, Vasconcelos MF, Fontana CS, Roos AL, Gonçalves F, Banks-Leite C, Cavarzere V, Efe MA, Alves MAS, Uezu A, Metzger JP, de Antas PTZ, Ferraz KMPMB, Calsavara LC, Bispo AA, Araujo HFP, Duca C, Piratelli AJ, Naka LN, Dias RA, Gatto CAFR, Vallejos MAV, Menezes GR, Bugoni L, Rajão H, Zocche JJ, Willrich G, Silva ES, Manica LT, Guaraldo AC, Althmann G, Serafini PP, Francisco MR, Lugarini C, Machado CG, Marques-Santos F, Bobato R, Souza EA de, Donatelli RJ, Ferreira CD, Morante-Filho JC, Paes-Macarrão ND, Macarrão A, Lima MR, Jacoboski LI, Candia-Gallardo C, Alegre VB, Jahn AE, Barbosa KVC, Cestari C, Silva JN, Silveira NS, Crestani ACV, Petronetto AP, Bovo AAA, Viana AD, Araujo AC, Santos AH, Amaral ACA, Ferreira A, Vieira-Filho AH, Ribeiro BC, Missagia CCC, Bosenbecker C, Medolago CAB, Espínola CRR, Faxina C, Nunes CEC, Prates C, Luz DTA, Moreno DJ, Mariz D, Faria D, Meyer D, Doná EA, Alexandrino ER, Fischer E, Girardi F, Giese FB, Shibuya FLS, Faria FA, Farias FB, Favaro FL, Freitas FJF, Chaves FG, Las-Casas FMG, Rosa GLM, Torre GMD La, Bochio GM, Bonetti GE, Kohler G, Toledo-Lima GS, Plucenio GP, Menezes Í, Torres IMD, Provinciato ICC, Viana IR, Roper JJ, Persegona JE, Barcik JJ, Martins-Silva J, Just JPG, Tavares-Damasceno JP, Ferreira JR de A, Rosoni JRR, Falcon JET, Schaedler LM, Mathias LB, Deconto LR, Rodrigues LC, Meyer MAP, Repenning M, Melo MA, Carvalho MAS, Rodrigues M, Nunes MFC, Ogrzewalska MH, Gonçalves ML, Vecchi MB, Bettio M, Baptista MNM, Arantes MS, Ruiz NL, Andrade PGB, Ribeiro PHL, Junior PMG, Macario P, Fratoni RO, Meurer R, Saint-Clair RS, Romagna RS, Lacerda RCA, Cerboncini RAS, Lyra RB, Lau R, Rodrigues RC, Faria RR, Laps RR, Althoff SL, de Jesus S, Namba S, Braga TV, Molin T, Câmara TPF, Enedino TR, Wischhoff U, de Oliveira VC, Leandro-Silva V, Araújo-Lima V, Lunardi VO, Gusmão RF, Correia JMS, Gaspar LP, Fonseca RCB, Neto PAFP, Aquino ACMM, Camargo BB, Cezila BA, Costa LM, Paolino RM, Kanda CZ, Monteiro ECS, Oshima JEF, Alves-Eigenheer M, Pizo MA, Silveira LF, Galetti M, Ribeiro MC (2019) Atlantic bird traits: a data set of bird morphological traits from the Atlantic forests of South America. Ecology 100:1–2 Saavedra F, Hensen I, Beck SG, Böhning-Gaese K, Lippok D, Töpfer T, Schleuning M (2014) Functional importance of avian seed dispersers changes in response to human-induced forest edges in tropical seed-dispersal networks. Oecologia 176:837–848 Santos GGA, Santos BA, Nascimento HEM, Tabarelli M (2012) Contrasting demographic structure of short- and long-lived pioneer tree species on Amazonian Forest edges. Biotropica 44:771–778 Sekercioglu CH, Loarie SR, Brenes FO (2007) Persistence of forest birds in the Costa Rican agricultural countryside. Conserv Bio 21:482–494 Villard MA, Metzger JP (2014) Beyond the fragmentation debate: a conceptual model to predict when habitat configuration really matters. J Appl Ecol 51:309–318 Vollstädt MGR, Ferger SW, Hemp A, Howell KM, Töpfer T, Böhning-Gaese K, Schleuning M (2017) Direct and indirect effects of climate, human disturbance and plant traits on avian functional diversity. Glob Ecol Biogeogr 26:963–972 Weiss KCB, Ray CA (2019) Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42:1–9 Wenny DG, DeVault TL, Johnson MD, Kelly D, Sekercioglu CH, Tomback DF, Whelan CJ (2011) The need to quantify ecosystem services provided by birds. Auk 128:1–14 Wheelwright NT (1985) Fruit-size, gape width, and the diets of fruit-eating birds. Ecology 66:808–818 Wilman H, Belmaker J, Simpson J, de La Rosa C, Rivadeneira MM, Jetz W (2014) Elton Traits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95:2027