Landscape-Scale Mixtures of Tree Species are More Effective than Stand-Scale Mixtures for Biodiversity of Vascular Plants, Bryophytes and Lichens

Forests - Tập 10 Số 1 - Trang 73
Steffi Heinrichs1, Christian Ammer1, Martina Mund1, Steffen Boch2, Sabine Budde1, Markus Fischer3, Jörg Müller4,5, Ingo Schöning6, Ernst‐Detlef Schulze6, Wolfgang Schmidt1, Martin Weckesser1, Peter Schall1
1Department Silviculture and Forest Ecology of the Temperate Zones, University of Goettingen, Büsgenweg 1, D-37077 Göttingen, Germany
2Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
3Institute of Plant Sciences, University of Bern, CH-3013 Bern, Switzerland
4Department of Nature Conservation, Heinz Sielmann Foundation, Unter den Kiefern 9, D-14641 Wustermark, Germany
5Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469 Potsdam, Germany
6Max-Planck Institute for Biogeochemistry, D-07745 Jena, Germany

Tóm tắt

Tree species diversity can positively affect the multifunctionality of forests. This is why conifer monocultures of Scots pine and Norway spruce, widely promoted in Central Europe since the 18th and 19th century, are currently converted into mixed stands with naturally dominant European beech. Biodiversity is expected to benefit from these mixtures compared to pure conifer stands due to increased abiotic and biotic resource heterogeneity. Evidence for this assumption is, however, largely lacking. Here, we investigated the diversity of vascular plants, bryophytes and lichens at the plot (alpha diversity) and at the landscape (gamma diversity) level in pure and mixed stands of European beech and conifer species (Scots pine, Norway spruce, Douglas fir) in four regions in Germany. We aimed to identify compositions of pure and mixed stands in a hypothetical forest landscape that can optimize gamma diversity of vascular plants, bryophytes and lichens within regions. Results show that gamma diversity of the investigated groups is highest when a landscape comprises different pure stands rather than tree species mixtures at the stand scale. Species mainly associated with conifers rely on light regimes that are only provided in pure conifer forests, whereas mixtures of beech and conifers are more similar to beech stands. Combining pure beech and pure conifer stands at the landscape scale can increase landscape level biodiversity and conserve species assemblages of both stand types, while landscapes solely composed of stand scale tree species mixtures could lead to a biodiversity reduction of a combination of investigated groups of 7 up to 20%.

Từ khóa


Tài liệu tham khảo

Gamfeldt, 2013, Higher levels of multiple ecosystem services are found in forests with more tree species, Nat. Commun., 4, 1340, 10.1038/ncomms2328

Schuler, 2017, From monocultures to mixed-species forests: Is tree diversity key for providing ecosystem services at the landscape scale?, Landsc. Ecol., 32, 1499, 10.1007/s10980-016-0422-6

Ratcliffe, 2017, Biodiversity and ecosystem functioning relations in European forests depend on environmental context, Ecol. Lett., 20, 1414, 10.1111/ele.12849

Soliveres, 2018, Multiple forest attributes underpin the provision of multiple ecosystem services, Nat. Commun., 9, 4839, 10.1038/s41467-018-07082-4

Chamagne, 2017, Forest diversity promotes individual tree growth in central European forest stands, J. Appl. Ecol., 54, 71, 10.1111/1365-2664.12783

Jucker, 2014, Stabilizing effects of diversity on aboveground wood production in forest ecosystems. Linking patterns and processes, Ecol. Lett., 17, 1560, 10.1111/ele.12382

Ammer, 2019, Diversity and forest productivity in a changing climate, New Phytol., 221, 50, 10.1111/nph.15263

Mina, 2018, Multiple factors modulate tree growth complementarity in central European mixed forests, J. Ecol., 106, 1106, 10.1111/1365-2745.12846

Pretzsch, 2012, Climate effects on productivity and resource-use efficiency of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in stands with different spatial mixing patterns, Trees, 26, 1343, 10.1007/s00468-012-0710-y

Fichtner, 2018, Neighbourhood interactions drive overyielding in mixed-species tree communities, Nat. Commun., 9, 1144, 10.1038/s41467-018-03529-w

Pretzsch, 2013, Resistance of European tree species to drought stress in mixed versus pure forests. Evidence of stress release by inter-specific facilitation, Plant Biol., 15, 483, 10.1111/j.1438-8677.2012.00670.x

Metz, 2016, Site-adapted admixed tree species reduce drought susceptibility of mature European beech, Glob. Chang. Biol., 22, 903, 10.1111/gcb.13113

Cannell, M.G.R., Malcolm, D.C., and Robertson, P.A. (1992). Ground vegetation under planted mixtures of trees. The Ecology of Mixed-Species Stands of Trees, Blackwell Scientific Publications.

Felton, 2010, Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe, For. Ecol. Manag., 260, 939, 10.1016/j.foreco.2010.06.011

Kraus, D., and Krumm, F. (2013). The functional role of biodiversity in forests. Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity, European Forest Institute.

Gilliam, 2007, The ecological significance of the herbaceous layer in temperate forest ecosystems, BioScience, 57, 845, 10.1641/B571007

Scherber, 2010, Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment, Nature, 468, 553, 10.1038/nature09492

Handa, 2014, Consequences of biodiversity loss for litter decomposition across biomes, Nature, 509, 218, 10.1038/nature13247

Tinya, 2013, Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests, For. Ecol. Manag., 306, 256, 10.1016/j.foreco.2013.07.001

Schmidt, 1997, Vegetation und Standortsverhältnisse in Buchen-Fichten Mischbeständen des Sollings, Forstarchiv, 68, 135

Augusto, 2003, Effects of tree species on understory vegetation and environmental conditions in temperate forests, Ann. For. Sci., 60, 823, 10.1051/forest:2003077

Sydes, 1981, Effects of tree leaf litter on herbaceous vegetation in deciduous woodland. I. Field investigations, J. Ecol., 69, 237, 10.2307/2259828

Hutchings, M.J., John, E.A., and Stewart, A.J.A. (2000). Heterogeneity, diversity and scale in plant communities. The Ecological Consequences of Environmental Heterogeneity, Blackwell Science.

Stein, 2014, Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales, Ecol. Lett., 17, 866, 10.1111/ele.12277

Cavard, 2011, Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests, Environ. Rev., 19, 142, 10.1139/a11-004

Gosselin, 2017, Influence of forest tree species composition on bryophytic diversity in mixed and pure pine (Pinus sylvestris L.) and oak (Quercus petraea (Matt.) Liebl.) stands, For. Ecol. Manag., 406, 318, 10.1016/j.foreco.2017.09.067

Brassard, 2013, Tree species diversity increases fine root productivity through increased soil volume filling, J. Ecol., 101, 210, 10.1111/1365-2745.12023

Barbier, 2008, Influence of tree species on understory vegetation diversity and mechanisms involved—A critical review for temperate and boreal forests, For. Ecol. Manag., 254, 1, 10.1016/j.foreco.2007.09.038

MacDonald, 2007, Understory plant communities of boreal mixedwood forests in western Canada: Natural patterns and response to variable-retention harvesting, For. Ecol. Manag., 242, 34, 10.1016/j.foreco.2007.01.029

Spiecker, 2003, Silvicultural management in maintaining biodiversity and resistance of forests in Europe—temperate zone, J. Environ. Manag., 67, 55, 10.1016/S0301-4797(02)00188-3

Spathelf, 2015, Forest management of Scots pine (Pinus sylvestris L.) in northern Germany—A brief review of the history and current trends, Forstarchiv, 86, 59

Knoke, 2008, Admixing broadleaved to coniferous tree species: A review on yield, ecological stability and economics, Eur. J. For. Res., 127, 89, 10.1007/s10342-007-0186-2

Brang, 2014, Suitability of close-to-nature silviculture for adapting temperate European forests to climate change, Forestry, 87, 492, 10.1093/forestry/cpu018

Spiecker, H., Hansen, J., Klimo, E., Skovsgaard, J.P., Sterba, H., and von Teuffel, K. (2004). Silvicultural strategies for conversion. Norway Spruce Conversion—Options and Consequences, Brill. European Forest Institute Research Report 18.

Ammer, 2008, Converting Norway spruce stands with beech—A review on arguments and techniques, Austrian J. For. Sci., 125, 3

Leuschner, C., and Ellenberg, H. (2017). Ecology of Central European Forests, Springer International Publishing.

Emmer, 1998, Reversing borealization as a means to restore biodiversity in Central-European mountain forests—An example from the Krkonoše Mountains, Czech Republic, Biodivers. Conserv., 7, 229, 10.1023/A:1008840603549

MLUR-Ministerium für Landwirtschaft, Umweltschutz und Raumordnung des Landes Brandenburg (2004). Waldbaurichtlinie 2004—“Grüner Ordner“ der Landesforstverwaltung Brandenburg, Ministerium für Landwirtschaft, Umweltschutz und Raumordnung. Available online: http://forst.brandenburg.de/media_fast/4055/wbr2004.pdf.

Borrass, 2017, The “German model” of integrative multifunctional forest management—Analysing the emergence and political evolution of a forest management concept, For. Policy Econ., 77, 16, 10.1016/j.forpol.2016.06.028

Vitali, 2017, Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany, Glob. Chang. Biol., 23, 5108, 10.1111/gcb.13774

Bartels, 2010, Is understory plant species diversity driven by resource quantity or resource heterogeneity?, Ecology, 91, 1931, 10.1890/09-1376.1

Weckesser, M. (2003). Die Bodenvegetation von Buchen-Fichten-Mischbeständen im Solling—Struktur, Diversität und Stoffhaushalt, Cuvillier-Verlag.

Budde, S. (2006). Auswirkungen des Douglasienanbaus auf die Bodenvegetation im Nordwestdeutschen Tiefland, Cuvillier-Verlag.

Boch, 2013, High plant species richness indicates management-related disturbances rather than the conservation status of forests, Basic Appl. Ecol., 14, 496, 10.1016/j.baae.2013.06.001

Boch, S., Prati, D., Hessenmöller, D., Schulze, E.-D., and Fischer, M. (2013). Richness of lichen species, especially of threatened ones, is promoted by management methods furthering stand continuity. PLoS ONE, 8.

Boch, 2019, Effects of forest management on bryophyte species richness in Central European forests, For. Ecol. Manag., 432, 850, 10.1016/j.foreco.2018.10.019

Boch, S., Müller, J., Prati, D., Blaser, S., and Fischer, M. (2013). Up in the tree—The over-looked richness of bryophytes and lichens in tree crowns. PLoS ONE, 8.

Kiebacher, 2016, Hidden crown jewels: The role of tree crowns for bryophyte and lichen species richness in sycamore maple wooded pastures, Biodivers. Conserv., 25, 1605, 10.1007/s10531-016-1144-4

Gauer, 2005, Waldökologische Naturräume Deutschlands—Forstliche Wuchsgebiete und Wuchsbezirke, Mitt. Ver. Forstl. Standortskde. Forstpflanzenz., 43, 1

Nieschulze, 2011, Identification of forest management types from ground-based and remotely sensed variables and the effects of forest management on forest structure and composition, Forstarchiv, 82, 171

Schall, 2018, Relations between forest management, stand structure and productivity across different types of Central European forests, Basic Appl. Ecol., 32, 39, 10.1016/j.baae.2018.02.007

Ganz, M. (2004). Entwicklung von Baumartenzusammensetzung und Struktur der Wälder vom Schwarzwald bis auf die Schwäbische Alb—mit besonderer Berücksichtigung der Buche. [Dissertation Thesis, University of Freiburg]. Available online: https://freidok.uni-freiburg.de/data/1616.

R Core Team (2018). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing. Available online: https://www.R-project.org/.

Wisskirchen, R., and Haeupler, H. (1998). Standardliste der Farn-und Blütenpflanzen Deutschlands, Ulmer.

Koperski, M., Sauer, M., Braun, W., and Gradstein, S.R. (2000). Referenzliste der Moose Deutschlands, Bundesamt für Naturschutz.

Wirth, V. (1995). Flechtenflora, Ulmer. [2nd ed.].

Crowley, 1992, Resampling methods for computation-intensive data analysis in ecology and evolution, Annu. Rev. Ecol. Syst., 23, 405, 10.1146/annurev.es.23.110192.002201

Chao, 2014, Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies, Ecol. Monogr., 84, 45, 10.1890/13-0133.1

Wood, 2011, Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models, J. R. Stat. Soc. B, 73, 3, 10.1111/j.1467-9868.2010.00749.x

Hamilton, N. (2019, January 18). Ggtern: An Extension to ’ggplot2’, for the Creation of Ternary Diagrams. R package version 2.2.1. Available online: https://CRAN.R-project.org/package=ggtern.

Legendre, 1997, Species assemblages and indicator species: The need for a flexible asymetrical approach, Ecol. Monogr., 67, 345

Ellenberg, 2001, Zeigerwerte von Pflanzen in Mitteleuropa, Scr. Geobot., 18, 1

Schmidt, M., Kriebitzsch, W.-U., and Ewald, J. (2011). Waldartenlisten der Farn-und Blütenpflanzen, Moose und Flechten Deutschlands, Bundesamt für Naturschutz.

Allan, 2014, Interannual variation in land-use intensity enhances grassland multidiversity, Proc. Natl. Acad. Sci. USA, 111, 308, 10.1073/pnas.1312213111

Colwell, 1994, Estimating terrestrial biodiversity through extrapolation, Philos. Trans. R. Soc. B, 345, 101, 10.1098/rstb.1994.0091

Landolt, E., Bäumler, B., Erhardt, A., Hegg, O., Klötzli, F., Lämmler, W., Nobis, M., Rudmann-Maurer, K., Schweingruber, F.H., and Theurillat, J.-P. (2010). Flora Indicative—Ecological Indicator values and Biological Attributes of the Flora of Switzerland and the Alps, Haupt Verlag.

Schmidt, 2014, Determining ancient woodland indicator plants for practical use: A new approach developed in northwest Germany, For. Ecol. Manag., 330, 228, 10.1016/j.foreco.2014.06.043

Hofmann, G., and Pommer, U. (2005). Potentielle Natürliche Vegetation von Brandenburg und Berlin, Eberswalder Forstliche Schriftenreihe 24.

Budde, 2011, Impact of the admixture of European beech (Fagus sylvatica L.) on plant species diversity and naturalness of conifer stands in Lower Saxony, Wald. Landsch. Nat., 11, 49

Metz, 2013, Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth, For. Ecol. Manag., 310, 275, 10.1016/j.foreco.2013.08.014

Pretzsch, 2016, Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with humidity, For. Ecol. Manag., 373, 149, 10.1016/j.foreco.2016.04.043

Forrester, 2018, Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica and Pinus sylvestris forests along a productivity and climate gradient through Europe, J. Ecol., 106, 746, 10.1111/1365-2745.12803

Jucker, 2015, Crown plasticity enables trees to optimize canopy packing in mixed-species forests, Funct. Ecol., 29, 1078, 10.1111/1365-2435.12428

Bolte, 2006, Interspecific competition impacts on the morphology and distribution of fine roots in European beech (Fagus sylvatica L.) and Norway Spruce (Picea abies (L.) Karst, Eur. J. For. Res., 125, 15, 10.1007/s10342-005-0075-5

Ma, 2017, Effects of species diversity on fine root productivity increase with stand development and associated mechanisms in a boreal forest, J. Ecol., 105, 237, 10.1111/1365-2745.12667

Barka, 2012, The impact of Norway spruce planting on herb vegetation in the mountain beech forests on two bedrock types, Eur. J. For. Res., 131, 1551, 10.1007/s10342-012-0624-7

Schmidt, 2008, Herb-layer diversity in deciduous forests: Raised by tree richness or beaten by beech?, For. Ecol. Manag., 256, 272, 10.1016/j.foreco.2008.04.012

Schmid, 1998, Warum fehlt den Gipsbuchenwäldern des Kyffhäusers (Thüringen) eine Krautschicht?, Forstwiss. Centralbl., 117, 277, 10.1007/BF02832982

Röhrig, E., Bartsch, N., and von Lüpke, B. (2006). Waldbau auf Ökologischer Grundlage, Ulmer.

Ulrich, 1983, Stabilität von Waldökosystemen unter dem Einfluss des Sauren Regens, Allg. Forstz., 26/27, 670

Klingenstein, 2008, Naturschutzfachliche Bewertung der Douglasie aus Sicht des Bundesamtes für Naturschutz (BfN), LWF Wissen, 59, 74

Tinya, 2009, The effects of stand structure on ground-floor bryophyte assemblages in temperate mixed forests, Biodivers. Conserv., 18, 2223, 10.1007/s10531-009-9586-6

Tinya, 2009, The effect of light conditions on herbs, bryophytes and seedlings of temperate mixed forests in Örség, Western Hungary, Plant Ecol., 204, 69, 10.1007/s11258-008-9566-z

Nebel, M., and Philippi, G. (2001). Die Moose Baden-Württembergs, Band 2, Verlag Eugen Ulmer.

Turetsky, 2003, The role of bryophytes in carbon and nitrogen cycling, Bryologist, 106, 395, 10.1639/05

Woziwoda, 2014, Species diversity, biomass accumulation and carbon sequestration in the understorey of post-agricultural Scots pine forests, Silva Fenn., 48, 1119, 10.14214/sf.1119

Boch, 2013, Fern and bryophyte endozoochory by slugs, Oecologia, 172, 817, 10.1007/s00442-012-2536-0

Fritz, 2008, Does forest continuity matter in conservation?—A study of epiphytic lichens and bryophytes in beech forests of southern Sweden, Biol. Conserv., 141, 655, 10.1016/j.biocon.2007.12.006

Brunialti, 2010, Lichens and bryophytes as indicators of old-growth features in Mediterranean forests, Plant Biosyst., 144, 221, 10.1080/11263500903560959

Allouche, 2012, Area–heterogeneity tradeoff and the diversity of ecological communities, Prod. Natl. Acad. Sci. USA, 109, 17495, 10.1073/pnas.1208652109

Kraus, D., and Krumm, F. (2013). Forest-specific diversity of vascular plants, bryophytes, and lichens. Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity, European Forest Institute.

Hofmeister, 2016, Large beech (Fagus sylvatica) trees as ‘lifeboats’ for lichen diversity in central European forests, Biodivers. Conserv., 25, 1073, 10.1007/s10531-016-1106-x

Schall, 2018, The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests, J. Appl. Ecol., 55, 267, 10.1111/1365-2664.12950

Neuner, 2015, Survival of Norway spruce remains higher in mixed stands under a dryer and warmer climate, Glob. Chang. Biol., 21, 935, 10.1111/gcb.12751

Ammer, 2018, Key ecological research questions for Central European forests, Basic Appl. Ecol., 32, 3, 10.1016/j.baae.2018.07.006