Land-use futures in the shared socio-economic pathways

Global Environmental Change - Tập 42 - Trang 331-345 - 2017
Alexander Popp1, Katherine Calvin2, Shinichiro Fujimori3, Peter Havlík4, Florian Humpenöder1, Elke Stehfest5, Benjamin Leon Bodirsky6,1, Jan Philipp Dietrich1, Jonathan C. Doelmann5, Mykola Gusti4,7, Tomoko Hasegawa3, Page Kyle2, Michael Obersteiner4, Andrzej Tabeau8, Kiyoshi Takahashi3, Hugo Valin4, Stephanie Waldhoff2, Isabelle Weindl9,1, Marshall Wise2, Elmar Kriegler1, Hermann Lotze‐Campen10,1, Oliver Fricko4, Keywan Riahi11,4, Detlef P. van Vuuren12,11
1Potsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, 14412 Potsdam, Germany
2Pacific Northwest National Laboratory, Joint Global Change Research Institute at the University of Maryland – College Park, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA
3National Institute for Environmental Studies (NIES), Japan
4International Institute for Applied Systems Analysis (IIASA), Austria
5PBL Netherlands Environmental Assessment Agency, Postbus 30314, 2500 GH The Hague, the Netherlands
6Commonwealth Scientific and Industrial Research Organisation, St Lucia, Australia
7Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine
8Wageningen Economic Research, Part of Wageningen University & Research, the Netherlands
9Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, 14469, Potsdam, Germany
10Humboldt-University of Berlin, 10099 Berlin, Germany
11Graz University of Technology, Austria
12Copernicus Institute for Sustainable Development, Utrecht University Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexandratos, 2012

Anderson, 2010, Biophysical considerations in forestry for climate protection, Front. Ecol. Environ., 9, 174, 10.1890/090179

Bauer, 2016, Shared socio-economic pathways of the energy sector—quantifying the narratives, Global Environ. Change

Bodirsky, 2014, Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution, Nat. Commun., 5, 10.1038/ncomms4858

Bodirsky, 2015, Global food demand scenarios for the 21st century, PLoS One, 10, e0139201, 10.1371/journal.pone.0139201

Bonan, 2008, Forests and climate change: forcings feedbacks, and the climate benefits of forests, Science, 320, 1444, 10.1126/science.1155121

Burney, 2010, Greenhouse gas mitigation by agricultural intensification, Proc. Natl. Acad. Sci., 107, 12052, 10.1073/pnas.0914216107

Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., Mcjeon, H., Patel, P., Smith, S., Waldhoff, S., Wise, M., 2016. SSP4: A World of Inequality. Global Environ. Change, this Special Issue.

Carpenter, 2005

Carpenter, 2009, Science for managing ecosystem services: beyond the millennium ecosystem assessment, Proc. Natl. Acad. Sci., 106, 1305, 10.1073/pnas.0808772106

Dellink, R., Chateau, J., Lanzi, E., Magné, B., n.d. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Change. 10.1016/j.gloenvcha.2015.06.004

Dietrich, 2014, Forecasting technological change in agriculture—an endogenous implementation in a global land use model, Technol. Forecast. Soc. Change, 81, 236, 10.1016/j.techfore.2013.02.003

Ebi, 2013, A new scenario framework for climate change research: background, process, and future directions, Clim. Change, 122, 363, 10.1007/s10584-013-0912-3

Foley, 2005, Global consequences of land use, Science, 309, 570, 10.1126/science.1111772

Fricko, O., Havlik, P., Rogelj, J., Klimont, Z., Gusti, M., Johnson, N., Kolp, P., Strubegger, M., Valin, H., Amann, M., Ermolieva, T., Forsell, N., Herrero, M., Heyes, C., Kindermann, G., Krey, V., Mccollum, D.L., Obersteiner, M., Pachauri, S., Rao, S., Schmid, E., Schoepp, W., Riahi, K., 2016. SSP2: A middle of the road scenario for the 21st century. Global Environ. Change, this Special Issue.

Fujimori, 2014, Land use representation in a global CGE model for long-term simulation: CET vs. logit functions, Food Secur., 6, 685, 10.1007/s12571-014-0375-z

Fujimori, S., Hasegawa, T., Masui, T., Takahashi, K., Silva Herran, H.Y.H., Dai, Y., Kainuma, M., et al., 2016. Global Environ. Change, SSP3: AIM Implementation of Shared Socioeconomic Pathways, this Special Issue.

Havlík, 2013, Crop productivity and the global livestock sector: implications for land use change and greenhouse gas emissions, Am. J. Agric. Econ., 95, 442, 10.1093/ajae/aas085

Havlík, 2014, Climate change mitigation through livestock system transitions, Proc. Natl. Acad. Sci., 111, 3709, 10.1073/pnas.1308044111

Humpenöder, 2014, Investigating afforestation and bioenergy CCS as climate change mitigation strategies, Environ. Res. Lett., 9, 64029, 10.1088/1748-9326/9/6/064029

Hurtt, 2011, Harmonization of land-use scenarios for the period 1500-2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands, Clim. Change, 109, 117, 10.1007/s10584-011-0153-2

Hussein, 2013, Climate change mitigation policies and poverty in developing countries, Environ. Res. Lett., 8, 35009, 10.1088/1748-9326/8/3/035009

Jackson, 2008, Protecting climate with forests, Environ. Res. Lett., 3, 44006, 10.1088/1748-9326/3/4/044006

Jones, 2015, Accounting for radiative forcing from albedo change in future global land-use scenarios, Clim. Change, 131, 691, 10.1007/s10584-015-1411-5

KC, S., Lutz, W., n.d., The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change. 10.1016/j.gloenvcha.2014.06.004

Kareiva, 2007, Domesticated nature: shaping landscapes and ecosystems for human welfare, Science, 316, 1866, 10.1126/science.1140170

Kindermann, 2006, Predicting the deforestation-trend under different carbon-prices, Carbon Balance Manag., 1, 15, 10.1186/1750-0680-1-15

Kok, 2016, Biodiversity and ecosystem services require IPBES to take novel approach to scenarios, Sustain. Sci., 1

Kriegler, 2012, The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways, Glob. Environ. Change, 22, 807, 10.1016/j.gloenvcha.2012.05.005

Kriegler, 2014, A new scenario framework for climate change research: the concept of shared climate policy assumptions, Clim. Change, 122, 401, 10.1007/s10584-013-0971-5

Kriegler, 2016, Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century, Glob. Environ. Change

Lambin, 2011, Global land use change, economic globalization, and the looming land scarcity, Proc. Natl. Acad. Sci., 108, 3465, 10.1073/pnas.1100480108

Lawrence, D. M., Hurtt, A., Arneth, V., Brovkin, K. V. Calvin, Jones, C. D. Jones, P. J. Lawrence, N. de Noblet-Ducoudré, J. Pongratz, S. I. Seneviratne, E. Shevliakova, 2016. The Land Use Model Intercomparison Project (LUMIP): Rationale and experimental design. Geosci. Model Dev. Discuss. 2016: 1–42.

Luyssaert, 2014, Land management and land-cover change have impacts of similar magnitude on surface temperature, Nat. Clim. Change, 4, 389, 10.1038/nclimate2196

Mueller, 2012, Closing yield gaps through nutrient and water management, Nature, 10.1038/nature11420

Nakicenovic, 2000

Nelson, G.C., Valin, H., Sands, R.D., Havlík, P., Ahammad, H., Deryng, D., Elliott, J., Fujimori, S., Hasegawa, T., Heyhoe, E., Kyle, P., Lampe, M.V., Lotze-Campen, H., d’Croz, D.M., Meijl, H., van, Mensbrugghe, D. van der, Müller, C., Popp, A., Robertson, R., Robinson, S., Schmid, E., Schmitz, C., Tabeau, A., Willenbockel, D., 2014. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. 111, 3274–3279. 10.1073/pnas.1222465110.

O’Neill, 2013, A new scenario framework for climate change research: the concept of shared socioeconomic pathways, Clim. Change, 122, 387, 10.1007/s10584-013-0905-2

O’Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., van Ruijven, B.J., van Vuuren, D.P., Birkmann, J., Kok, K., Levy, M., Solecki, W., n.d. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21 st century. Glob. Environ. Change. 10.1016/j.gloenvcha.2015.01.004.

Obersteiner, M., Azar, C., Kauppi, P., Möllersten, K., Moreira, J., Nilsson, S., Read, P., Riahi, K., Schlamadinger, B., Yamagata, Y., Yan, J., Ypersele, J.-P. van, 2001. Managing Climate Risk. Science 294, 786–787. 10.1126/science.294.5543.786b.

Pitman, 2009, Uncertainties in climate responses to past land cover change: first results from the LUCID intercomparison study, Geophys. Res. Lett., 36, L14814, 10.1029/2009GL039076

Popp, 2010, Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production, Glob. Environ. Change, 20, 451, 10.1016/j.gloenvcha.2010.02.001

Popp, 2011, The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system, Environ. Res. Lett., 6, 34017, 10.1088/1748-9326/6/3/034017

Popp, 2013, Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options, Clim. Change, 123, 495, 10.1007/s10584-013-0926-x

Popp, 2014, Land-use protection for climate change mitigation, Nat. Clim. Change, 4, 1095, 10.1038/nclimate2444

Preston, 2011, Putting vulnerability to climate change on the map: a review of approaches, benefits, and risks, Sustain. Sci., 6, 177, 10.1007/s11625-011-0129-1

Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., et al (2012). Global Energy Assessment Chapter 17: Energy Pathways for Sustainable Development. In Global Energy Assessment – Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and the International Institute for Applied Systems Analysis, Laxenburg, Austria, pp. 1203–1306.

Riahi, 2016, Shared socioeconomic pathways: an overview, Global Environ. Change

Robinson, 2014, Comparing supply-side specifications in models of global agriculture and the food system, Agric. Econ., 45, 21, 10.1111/agec.12087

Rudel, 2009, Agricultural intensification and changes in cultivated areas, 1970–2005, Proc. Natl. Acad. Sci., 106, 20675, 10.1073/pnas.0812540106

Schmitz, 2012, Trading more food: Implications for land use, greenhouse gas emissions, and the food system, Glob. Environ. Change, 22, 189, 10.1016/j.gloenvcha.2011.09.013

Schmitz, 2014, Land-use change trajectories up to 2050: insights from a global agro-economic model comparison, Agric. Econ., 45, 69, 10.1111/agec.12090

Smith, P., Gregory, P.J., Vuuren, D., van, Obersteiner, M., Havlík, P., Rounsevell, M., Woods, J., Stehfest, E., Bellarby, J., 2010. Competition for land. Philos. Trans. R. Soc. B Biol. Sci. 365, 2941–2957. 10.1098/rstb.2010.0127.

Smith, 2013, How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?, Glob. Change Biol., 19, 2285, 10.1111/gcb.12160

Stehfest, 2009, Climate benefits of changing diet, Clim. Change, 95, 83, 10.1007/s10584-008-9534-6

Stehfest, E., van Vuuren, D., Kram, T., Bouwman, L., Alkemade, R., Bakkenes, M., Biemans, H., Bouwman, A., den Elzen, M., Janse, J., Lucas, P., van Minnen, J., Müller, M., Prins, A. 2014. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model description and policy applications, The Hague: PBL Netherlands Environmental Assessment Agency.

Steinfeld, 2010, Livestock production and the global environment: consume less or produce better?, Proc. Natl. Acad. Sci., 107, 18237, 10.1073/pnas.1012541107

Tilman, 2011, Global food demand and the sustainable intensification of agriculture, Proc. Natl. Acad. Sci., 108, 20260, 10.1073/pnas.1116437108

Tubiello, F.N., Salvatore, M., Ferrara, A.F., House, J., Federici, S., Rossi, S., Biancalani, R., Condor Golec, R.D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz Sanchez, M.J., Srivastava, N., Smith, P., 2015. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Glob. Change Biol. n/a-n/a. 10.1111/gcb.12865

Valdivia, 2015, Representative agricultural pathways and scenarios for regional integrated assessment of climate change impacts, vulnerability, and adaptation, vol. 3, 101

Valin, 2014, The future of food demand: understanding differences in global economic models, Agric. Econ., 45, 51, 10.1111/agec.12089

Verburg, 2009, The effect of agricultural trade liberalisation on land-use related greenhouse gas emissions, Glob. Environ. Change, 19, 434, 10.1016/j.gloenvcha.2009.06.004

Van Vuuren, D.P., van, Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G.C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T., Meinshausen, M., Nakicenovic, N., Smith, S.J., Rose, S.K., 2011. The representative concentration pathways: an overview. Clim. Change 109, 5–31. 10.1007/s10584-011-0148-z

van Vuuren, 2012, Scenarios in Global Environmental Assessments: Key characteristics and lessons for future use, Glob. Environ. Change, 22, 884, 10.1016/j.gloenvcha.2012.06.001

Van Vuuren, 2016, Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm, Global Environ. Change

von Lampe, M., Willenbockel, D., Ahammad, H., Blanc, E., Cai, Y., Calvin, K., Fujimori, S., Hasegawa, T., Havlik, P., Heyhoe, E., Kyle, P., Lotze-Campen, H., Mason d’Croz, D., Nelson, G.C., Sands, R.D., Schmitz, C., Tabeau, A., Valin, H., van der Mensbrugghe, D., van Meijl, H., 2014. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agric. Econ. 45, 3–20. 10.1111/agec.12086.

Vuuren, D.P., van, Kriegler, E., O’Neill, B.C., Ebi, K.L., Riahi, K., Carter, T.R., Edmonds, J., Hallegatte, S., Kram, T., Mathur, R., Winkler, H., 2013. A new scenario framework for Climate Change Research: scenario matrix architecture. Clim. Change 122, 373–386. 10.1007/s10584-013-0906-1.

Weindl, 2015, Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture, Environ. Res. Lett., 10, 94021, 10.1088/1748-9326/10/9/094021

Wiebe, K., Lotze-Campen, H., Sands, R., Tabeau, A., Mensbrugghe, D. van der, Biewald, A., Bodirsky, B., Islam, S., Kavallari, A., Mason-D’Croz, D., Müller, C., Popp, A., Robertson, R., Robinson, S., Meijl, H., van, Willenbockel, D., 2015. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 10, 85010. 10.1088/1748-9326/10/8/085010

Wilbanks, 2013, SSPs from an impact and adaptation perspective, Clim. Change, 122, 473, 10.1007/s10584-013-0903-4

Wise, 2014, Economic and physical modeling of land use in GCAM 3.0 and an application to agricultural productivity, land, and terrestrial carbon, Clim. Change Econ., 5, 1450003, 10.1142/S2010007814500031

WORLDBANK. 2015. World Development Indicators. http://data.worldbank.org/data-catalog/world-development-indicators.