Land and ocean nutrient and carbon cycle interactions

Current Opinion in Environmental Sustainability - Tập 2 - Trang 258-263 - 2010
Richard J Matear1, Ying-Ping Wang2, Andrew Lenton1
1CSIRO Marine and Atmospheric Research, Hobart, Tasmania, 7001, Australia
2CSIRO Marine and Atmospheric Research, Aspendale, Victoria 3195, Australia

Tài liệu tham khảo

Knorr, 2009, Is the airborne fraction of anthropogenic CO2 emissions increasing?, Geophys Res Lett, 36, 21710, 10.1029/2009GL040613 Friedlingstein, 2006, Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison, J Clim, 19, 3337, 10.1175/JCLI3800.1 Sokolov, 2008, Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle, J Clim, 21, 3776, 10.1175/2008JCLI2038.1 Thornton, 2009, Carbon–nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere–ocean general circulation model, Biogeosciences, 6, 2099, 10.5194/bg-6-2099-2009 Wang, 2009, Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback, Geophys Res Lett, 36, L24403, 10.1029/2009GL041009 Bonan, 2008, Forests and climate change: forcings, feedbacks, and the climate benefits of forests, Science, 320, 1444, 10.1126/science.1155121 Matear, 1999, Climate change feedback on the future oceanic CO2 uptake, Tellus, 51B, 722, 10.3402/tellusb.v51i3.16472 Ballantyne, 2008, Nutrient recycling affects autotroph and ecosystem stoichiometry, Am Nat, 171, 511, 10.1086/528967 Vitousek, 2010, Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions, Ecol Appl, 20, 5, 10.1890/08-0127.1 Matzek, 2009, N:P stoichiometry and protein:RNA ratios in vascular plants: an evaluation of the growth-rate hypothesis, Ecol Lett, 12, 765, 10.1111/j.1461-0248.2009.01310.x Finzi, 2007, Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2, Proc Natl Acad Sci U S A, 104, 14014, 10.1073/pnas.0706518104 Luo, 2004, Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide, Bioscience, 54, 731, 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2 Parton, 2007, Global-scale similarities in nitrogen release patterns during long-term decomposition, Science, 315, 361, 10.1126/science.1134853 Schlesinger, 2009, On the fate of anthropogenic nitrogen, Proc Natl Acad Sci U S A, 106, 203, 10.1073/pnas.0810193105 Houlton, 2008, A unifying framework for dinitrogen fixation in the terrestrial biosphere, Nature, 454, 327, 10.1038/nature07028 Zaehle, 2010, Carbon and nitrogen cycle dynamics in the O–CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance, Glob Biogeochem Cycles, 24, G1006, 10.1029/2009GB003522 Edwards, 2005, Phosphorus status determines biomass response to elevated CO2 in a legume: C-4 grass community, Glob Change Biol, 11, 1968 Thayer, 2008, Accentuation of phosphorus limitation in Geranium dissectum by nitrogen: an ecological genomics study, Glob Change Biol, 14, 1877, 10.1111/j.1365-2486.2008.01618.x F.J. Dentener, 2006. Global Maps of Atmospheric Nitrogen Deposition, 1860, 1993, and 2050. Data set. Available on-line [http://daac.ornl.gov/] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/830. Gruber, 2008, An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293, 10.1038/nature06592 Redfield, 1963 Hopkinson, 2005, Efficient export of carbon to the deep ocean through dissolved organic matter, Nature, 433, 142, 10.1038/nature03191 Thingstad, 2008, Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem, Nature, 455, 387, 10.1038/nature07235 Riebesell, 2007, Enhanced biological carbon consumption in a high CO2 ocean, Nature, 450, 545, 10.1038/nature06267 Wohlers, 2009, Changes in biogenic carbon flow in response to sea surface warming, Proc Natl Acad Sci U S A, 106, 7067, 10.1073/pnas.0812743106 Arrigo, 2007, Carbon cycle – marine manipulations, Nature, 450, 491, 10.1038/450491a Iglesias-Rodriguez, 2008, Phytoplankton calcification in a high-CO2 world, Science, 320, 336, 10.1126/science.1154122 Matear, 2009, Efficiency of carbon sequestration under rising CO2, Biogeosciences Discussion, 6, 8101, 10.5194/bgd-6-8101-2009 Oschlies, 2008, Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export, Glob Biogeochem Cycles, 22, GB4008, 10.1029/2007GB003147 Schneider, 2008, Assessing the sensitivity of modeled air-sea CO2 exchange to the remineralization depth of particulate organic and inorganic carbon, Glob Biogeochem Cycles, 22, G3021, 10.1029/2007GB003100 Kwon, 2009, The impact of remineralization depth on the air–sea carbon balance, Nat Geosci, 2, 630, 10.1038/ngeo612 Oschlies, 2010, Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice, Geophys Res Lett, 37, 04701, 10.1029/2009GL041961 Yool, 2009, Low efficiency of nutrient translocation for enhancing oceanic uptake of carbon, J Geophys, 114, 13, 10.1029/2008JC004792 Wang, 2009, A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosci Discuss, 9891 Houghton, 2007, Balancing the global carbon budget, Annu Rev Earth Pl Sc, 35, 313, 10.1146/annurev.earth.35.031306.140057