Laminar Convective Boundary Layer Slip Flow over a Flat Plate using Homotopy Analysis Method

Journal of The Institution of Engineers (India): Series E - Tập 97 Số 2 - Trang 115-121 - 2016
Yahaya Shagaiya Daniel1
1Department of Mathematical Science, Faculty of Science, Kaduna State University, Kaduna, Nigeria

Tóm tắt

Từ khóa


Tài liệu tham khảo

M. Gad-el-Hak (ed.), The MEMS handbook (CRC Press, Boca Raton, 2001)

M.H. Yazdi, S. Abdullah, I. Hashim, K. Sopian, Slip MHD liquid flow and heat transfer over non-linear permeable stretching surface with chemical reaction. Int. J. Heat Mass Transf. 54(15), 3214–3225 (2011)

K. Das, Slip effects on MHD mixed convection stagnation point flow of a micropolar fluid towards a shrinking vertical sheet. Comput. Math Appl. 63(1), 255–267 (2012)

S. Mukhopadhyay, R.S.R. Gorla, Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation. Heat Mass Transf. 48(10), 1773–1781 (2012)

M.M. Rashidi, E. Erfani, Analytical method for solving steady MHD convective and slip flow due to a rotating disk with viscous dissipation and Ohmic heating. Eng. Comput. 29(6), 562–579 (2012)

L. Zheng, C. Zhang, X. Zhang, J. Zhang, Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium. J. Franklin Inst. 350(5), 990–1007 (2013)

K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, MHD boundary layer slip flow and heat transfer over a flat plate. Chin. Phys. Lett. 28(2), 024701 (2011)

A. Aziz, Hydrodynamic and thermal slip flow boundary layers over a flat plate with constant heat flux boundary condition. Commun. Nonlinear Sci. Numer. Simul. 15(3), 573–580 (2010)

K. Bhattacharyya, S. Mukhopadhyay, G.C. Layek, Similarity solution of mixed convective boundary layer slip flow over a vertical plate. Ain Shams Eng. J. 4(2), 299–305 (2013)

A. Aziz, J.I. Siddique, T. Aziz, Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium. PLoS ONE 9(12), e114544 (2014)

O.D. Makinde, A. Aziz, Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 50(7), 1326–1332 (2011)

S.O. Ajadi, A. Adegoke, A. Aziz, Slip boundary layer flow of non-Newtonian fluid over a flat plate with convective thermal boundary condition. Int. J. Nonlinear Sci 8(3), 300–306 (2009)

T. Hayat, M. Waqas, S.A. Shehzad, A. Alsaedi, Mixed convection radiative flow of Maxwell fluid near a stagnation point with convective condition. J. Mech. 29(03), 403–409 (2013)

T. Hayat, Z. Iqbal, M. Qasim, S. Obaidat, Steady flow of an Eyring Powell fluid over a moving surface with convective boundary conditions. Int. J. Heat Mass Transf. 55(7), 1817–1822 (2012)

T. Hayat, S.A. Shehzad, M. Qasim, S. Asghar, Three-dimensional stretched flow via convective boundary condition and heat generation/absorption. Int. J. Numer. Meth. Heat Fluid Flow 24(2), 342–358 (2014)

M. Turkyilmazoglu, Analytic approximate solutions of rotating disk boundary layer flow subject to a uniform suction or injection. Int. J. Mech. Sci. 52(12), 1735–1744 (2010)

M.J. Martin, I.D. Boyd, In: Blasius boundary layer solution with slip flow conditions. Rarefied gas dynamics, 22nd international symposium, vol. 858, ed. by T.J. Bartel and M.A. Gallis. (AIP Publishing, College Park, MD, 2001)

A. Aziz, A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun. Nonlinear Sci. Numer. Simulat. 14, 1064–1068 (2009)

F. Brochard-Wyart, P.G. De Gennes, H. Hervert, C. Redon, Wetting and slippage of polymer melts on semi-ideal surfaces. Langmuir 10(5), 1566–1572 (1994)

Si Xinhui, Zheng Liancun, Zhang Xinxin, Si Xinyi, Homotopy analysis method for the asymmetric laminar flow and heat transfer of viscous fluid between contracting rotating disks. Appl. Math. Model. 36(4), 1806–1820 (2012)

S. Dinarvand, M.M. Rashidi, A reliable treatment of a homotopy analysis method for two-dimensional viscous flow in a rectangular domain bounded by two moving porous walls. Nonlinear Anal. Real World Appl. 11(3), 1502–1512 (2010)

A.R. Sohouli, M. Famouri, A. Kimiaeifar, G. Domairry, Application of homotopy analysis method for natural convection of Darcian fluid about a vertical full cone embedded in pours media prescribed surface heat flux. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1691–1699 (2010)

S. Liao, Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14(4), 983–997 (2009)