Lambda polarization at the Electron-ion collider in China

Nuclear Science and Techniques - Tập 34 - Trang 1-9 - 2023
Zhaohuizi Ji1, Xiao-Yan Zhao1, Ai-Qiang Guo2, Qing-Hua Xu1, Jin-Long Zhang1,3
1Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, China
2Institute of Modern Physics of CAS, Lanzhou, China
3Southern Center for Nuclear-Science Theory (SCNT), Institute of Modern Physics, Chinese Academy of Sciences, Huizhou, China

Tóm tắt

Lambda polarization can be measured through its self-analyzing weak decay, making it an ideal candidate for studying spin effects in high-energy scattering. In lepton-nucleon deep inelastic scattering (DIS), Lambda polarization measurements can probe polarized parton distribution functions (PDFs) and polarized fragmentation functions (FFs). One of the most promising facilities for high-energy nuclear physics research is the proposed Electron-ion collider in China (EicC). As a next-generation facility, EicC is set to advance our understanding of nuclear physics to new heights. In this article, we study the Lambda production in electron-proton collisions at the EicC energy, in particular the reconstruction of Lambda based on the performance of the designed EicC detector. In addition, taking spontaneous transverse polarization as an example, we provide a theoretical prediction with a statistical projection based on one month of EicC data, offering valuable insights into future research prospects.

Tài liệu tham khảo

T.D. Lee, C.N. Yang, General partial wave analysis of the decay of a hyperon of spin 1/2. Phys. Rev. 108, 1645–1647 (1957). https://doi.org/10.1103/PhysRev.108.1645 R.L. Workman, V.D. Burkert, V. Crede et al. (Particle Data Group), Review of particle physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097 G. Bunce, R. Handler, R. March et al., \({\Lambda }^{0}\) hyperon polarization in inclusive production by 300-GeV protons on beryllium. Phys. Rev. Lett. 36, 1113–1116 (1976). https://doi.org/10.1103/PhysRevLett.36.1113 G.L. Kane, J. Pumplin, W. Repko, Transverse quark polarization in large-\({p}_\text{ T }\) reactions, \({e}^{+}{e}^{-}\) jets, and leptoproduction: a test of quantum chromodynamics. Phys. Rev. Lett. 41, 1689–1692 (1978). https://doi.org/10.1103/PhysRevLett.41.1689 D. Buskulic, I. De Bonis, D. Decamp et al., (ALEPH Collaboration), measurement of \(\Lambda\) polarization from \(Z\) decays. Phys. Lett. 374, 319–330 (1996). https://doi.org/10.1016/0370-2693(96)00300-0 K. Ackerstaff, G. Alexander, J. Allison et al., (OPAL Collaboration), Polarization and forward-backward asymmetry of \(\Lambda\) baryons in hadronic \(Z^0\) decays. Eur. Phys. J. C 2, 49–59 (1998). https://doi.org/10.1007/s100520050123 Y. Guan, A. Vossen, I. Adachi et al., (Belle Collaboration), Observation of transverse \(\Lambda /\overline{\Lambda }\) hyperon polarization in \(e^+e^-\) annihilation at Belle. Phys. Rev. Lett. 122, 042001 (2019). https://doi.org/10.1103/PhysRevLett.122.042001 M.R. Adams, M. Aderholz, S. Aid et al., (E665 Collaboration), \(\Lambda\) and \(\overline{\Lambda }\) polarization from deep inelastic muon scattering. Eur. Phys. J. C 17, 263–267 (2000). https://doi.org/10.1007/s100520000493 P. Astier, D. Autiero, A. Baldisseri et al., (NOMAD Collaboration), Measurement of the \(\Lambda\) polarization in \(\nu _{\mu }\) charged current interactions in the NOMAD experiment. Nucl. Phys. B 588, 3–36 (2000). https://doi.org/10.1016/S0550-3213(00)00503-4 A. Airapetian, N. Akopov, M. Amarian et al., (HERMES Collaboration), Measurement of longitudinal spin transfer to \(\Lambda\) hyperons in deep-inelastic lepton scattering. Phys. Rev. D 64, 112005 (2001). https://doi.org/10.1103/PhysRevD.64.112005 B.I. Abelev, M.M. Aggarwal, Z. Ahammed et al., (STAR Collaboration), Longitudinal spin transfer to \(\Lambda\) and \(\overline{\Lambda }\) hyperons in polarized proton-proton collisions at \(\sqrt{s}=200 \rm GeV\). Phys. Rev. D 80, 111102 (2009). https://doi.org/10.1103/PhysRevD.80.111102 J. Adam, L. Adamczyk, J.R. Adams et al., (STAR Collaboration), Improved measurement of the longitudinal spin transfer to \(\Lambda\) and \(\overline{\Lambda }\) hyperons in polarized proton-proton collisions at \(\sqrt{s}=200 \rm GeV\). Phys. Rev. D 98, 112009 (2018). https://doi.org/10.1103/PhysRevD.98.112009 J. Adam, L. Adamczyk, J.R. Adams et al., (STAR Collaboration), Transverse spin transfer to \(\Lambda\) and \(\overline{\Lambda }\) hyperons in polarized proton-proton collisions at \(\sqrt{s}=200 \rm GeV\). Phys. Rev. D 98, 091103 (2018). https://doi.org/10.1103/PhysRevD.98.091103 L. Adamczyk, J.K. Adkins, G. Agakishiev et al., (STAR Collaboration), Global \(\Lambda\) hyperon polarization in nuclear collisions. Nature 548, 62–65 (2017). https://doi.org/10.1038/nature23004 M.S. Abdallah, B.E. Aboona, J. Adam et al., (STAR Collaboration), Pattern of global spin alignment of \(\phi\) and \(K^{*0}\) mesons in heavy-ion collisions. Nature 614, 244–248 (2023). https://doi.org/10.1038/s41586-022-05557-5 X.N. Wang, Vector meson spin alignment by the strong force field. Nucl. Sci. Tech. 34, 15 (2023). https://doi.org/10.1007/s41365-023-01166-7 J. Chen, Z.-T. Liang, Y.-G. Ma et al., Global spin alignment of vector mesons and strong force fields in heavy-ion collisions. Sci. Bull. 68, 874 (2023). https://doi.org/10.1016/j.scib.2023.04.001 X. Sun, C.S. Zhou, J.H. Chen et al., Measurements of global polarization of QCD matter in heavy-ion collisions. Acta Phys. Sin. 72(7), 072401 (2023). https://doi.org/10.7498/aps.72.20222452 (in Chinese) W. Lu, B.Q. Ma, The strange quark spin of the proton in semi-inclusive \({\Lambda }\) leptoproduction. Phys. Lett. B 357, 419–422 (1995). https://doi.org/10.1016/0370-2693(95)00927-D J. Ellis, D. Kharzeev, A. Kotzinian, The proton spin puzzle and \(\Lambda\) polarization in deep-inelastic scattering. Z. Phys. C Parti. Fields 69, 467–474 (1996). https://doi.org/10.1007/BF02907428 R.L. Jaffe, Polarized \({\Lambda }\) in the current fragmentation region. Phys. Rev. D 54, R6581–R6585 (1996). https://doi.org/10.1103/PhysRevD.54.R6581 B.Q. Ma, I. Schmidt, J. Soffer et al., \({\Lambda }\), \({\bar{\Lambda }}\) polarization and spin transfer in lepton deep inelastic scattering. Eur. Phys. J. C 16, 657–664 (2000). https://doi.org/10.1007/s100520000447 J. Ellis, A. Kotzinian, D.V. Naumov, Intrinsic polarized strangeness and \({\Lambda ^0}\) polarization in deep inelastic production. Eur. Phys. J. C 25, 603–613 (2002). https://doi.org/10.1140/epjc/s2002-01025-2 S.S. Zhou, Y. Chen, Z.T. Liang et al., Longitudinal polarization of hyperon and anti-hyperon in semi-inclusive deep-inelastic scattering. Phys. Rev. D 79, 094018 (2009). https://doi.org/10.1103/PhysRevD.79.094018 K.-B. Chen, Z.-T. Liang, Y.-K. Song et al., Longitudinal and transverse polarizations of \(\Lambda\) hyperon in unpolarized SIDIS and \(e^+e^-\) annihilation. Phys. Rev. D 105, 034027 (2022). https://doi.org/10.1103/PhysRevD.105.034027 Z.B. Kang, J. Terry, A. Vossen et al., Transverse \({\Lambda }\) production at the future Electron-Ion Collider. Phys. Rev. D 105, 094033 (2022). https://doi.org/10.1103/PhysRevD.105.094033 X. Cao, L. Chang, N.B. Chang et al., Electron ion collider in China. Nuclear Techniques 43(2), 020001 (2020) https://doi.org/10.11889/j.0253-3219.2020.hjs.43.020001 (in Chinese) D.P. Anderle, V. Bertone, X. Cao et al., Electron-ion collider in China. Front. Phys. 16, 64701 (2021). https://doi.org/10.1007/s11467-021-1062-0 A. Lehrach, K. Aulenbacher, O. Boldt et al., The polarized electron-nucleon collider project ENC at GSI/FAIR. J. Phys. Conf. Ser. 295, 012156 (2011). https://doi.org/10.1088/1742-6596/295/1/012156 J.L. Abelleira Fernandez, C. Adolphsen, A.N. Akay et al., A large hadron electron collider at CERN report on the physics and design concepts for machine and detector. J. Phys. G Nucl. Part. Phys. 39, 075001 (2012). https://doi.org/10.1088/0954-3899/39/7/075001 R. Abdul Khalek, A. Accardi, J. Adam et al., Science requirements and detector concepts for the Electron-Ion Collider: EIC yellow report. Nucl. Phys. A 1026, 122447 (2022). https://doi.org/10.1016/j.nuclphysa.2022.122447 PYTHIAeRHIC. https://eic.github.io/software/pythia6.html T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026 M.R. Whalley, D. Bourilkov, R. C. Group, The les houches accord PDFs (LHAPDF) and LHAGLUE, arXiv:hep-ph/0508110 D.P. Anderle, A.Q. Guo, F. Hekhorn et al., Probing gluon distributions with \(D^0\) production at the EicC. arXiv: 2307.16135 A. Bacchetta, U. D’Alesio, M. Diehl, C. Miller, Single-spin asymmetries: the trento conventions. Phys. Rev. D 70, 117504 (2004). https://doi.org/10.1103/PhysRevD.70.117504 D. Boer, P.J. Mulders, Time-reversal odd distribution functions in leptoproduction. Phys. Rev. D 57, 5780–5786 (1997). https://doi.org/10.1103/PhysRevD.57.5780 A. Bacchetta, M. Diehl, K. Goeke et al., Semi-inclusive deep inelastic scattering at small transverse momentum. JHEP 2007, 093 (2007). https://doi.org/10.1088/1126-6708/2007/02/093 M. Anselmino, M. Boglione, J.O. Gonzalez H. et al., Unpolarised transverse momentum dependent distribution and fragmentation functions from SIDIS multiplicities. J. High Energ. Phys 2014, 5 (2014). https://doi.org/10.1007/JHEP04(2014)005 D. Callos, Z.-B. Kang, J. Terry, Extracting the transverse momentum dependent polarizing fragmentation functions. Phys. Rev. D 102, 096007 (2020). https://doi.org/10.1103/PhysRevD.102.096007 T.-J. Hou, K.P. Xie, J. Gao et al., Progress in the CTEQ-TEA NNLO global QCD analysis. arXiv:1908.11394 D. de Florian, M. Stratmann, W. Vogelsang, QCD analysis of unpolarized and polarized \({\Lambda }\)-baryon production in leading and next-to-leading order. Phys. Rev. D 57, 5811–5824 (1998). https://doi.org/10.1103/PhysRevD.57.5811 S. Albino, B.A. Kniehl, G. Kramer, AKK update: improvements from new theoretical input and experimental data. Nucl. Phys. B 803, 42–104 (2008). https://doi.org/10.1016/j.nuclphysb.2008.05.017 A. Metz, Gluon-exchange in spin-dependent fragmentation. Phys. Lett. B 549, 139–145 (2002). https://doi.org/10.1016/S0370-2693(02)02899-X S. Meißner, A. Metz, Partonic pole matrix elements for fragmentation. Phys. Rev. Lett. 102, 172003 (2009). https://doi.org/10.1103/PhysRevLett.102.172003 D. Boer, Z.-B. Kang, W. Vogelsang et al., Test of the universality of Naive-time-reversal-odd fragmentation functions. Phys. Rev. Lett. 105, 202001 (2010). https://doi.org/10.1103/PhysRevLett.105.202001 K.-B. Chen, Z.-T. Liang, Y.-L. Pan et al., Isospin symmetry of fragmentation functions. Phys. Lett. B 816, 136217 (2021). https://doi.org/10.1016/j.physletb.2021.136217