Lagrangian Geometry of Algebraic Manifolds

Pleiades Publishing Ltd - Tập 19 - Trang 337-342 - 2022
N. A. Tyurin1,2
1Laboratory of Theoretical Physics, Joint Institute of Nuclear Research, Dubna, Russia
2Steklov Mathematical Institute of Russian Academy of Sciences , Moscow Russia

Tóm tắt

Each algebraic manifold can be considered a symplectic manifold equipped with a Hodge-type Kähler form. It is therefore natural to study the Lagrangian geometry of an arbitrary algebraic manifold. Two constructs applicable to a fairly broad family of algebraic manifolds are presented.

Tài liệu tham khảo

V. Arnol’d and A. Givental’, “Symplectic geometry,” Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat. Fundam. Napravl. 4, 5 (1985). P. Griffits and J. Harris, Principles of Algebraic Geometry (Wiley, New York, 1978). Yu. Chekanov, “Lagrangian tori in a symplectic vector space and global symplectomorphisms,” Math. Z. 223, 547 (1996). T. Delzant, “Hamiltoniens périodiques et images convexes de l’application moment,” Bull. Soc. Math. Fr. 116, 315 (1988). N. Tyurin, “Pseudotoric structures: Lagrangian submanifolds and Lagrangian fibrations,” Russ. Math. Surv. 72, 131 (2017). N. Tyurin, “Monotonic Lagrangian tori of standard and nonstandard types in toric and pseudotoric Fano varieties,” Tr. MI RAN im. Steklova 307, 267 (2019). N. Nekhoroshev, “Action-angle variables and their generalizations,” Tr. MMO 26, 181 (1972). A. Mironov, “New examples of Hamilton-minimal and minimal Lagrangian manifolds in Cn and CPn,” Sb. Math. 195, 85 (2004). N. Tyurin, “Mironov Lagrangian cycles in algebraic varieties,” Sb. Math. 212, 389 (2021). N. Tyurin, “Examples of Mironov cycles in Grassmannians,” Sib. Math. J. 62, 370 (2021).