Lactic acid production from different sources of organic solid waste: evaluation of the inoculum type and operational optimization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Grewal J, Sadaf A, Yadav N, Khare SK (2020) Agroindustrial waste based biorefineries for sustainable production of lactic acid. Waste Biorefinery 125–153. https://doi.org/10.1016/B978-0-12-818228-4.00005-8
García-Depraect O, Muñoz R, Rodríguez E et al (2021) Microbial ecology of a lactate-driven dark fermentation process producing hydrogen under carbohydrate-limiting conditions. Int J Hydrogen Energy 46:11284–11296. https://doi.org/10.1016/J.IJHYDENE.2020.08.209
Jem KJ, Van Der Pol JF, De Vos S (2010) Microbial lactic acid, its polymer poly(lactic acid), and their industrial applications. Microbiol Monographs 14:323–346. https://doi.org/10.1007/978-3-642-03287-5_13
Weimer PJ, Moen GN (2013) Quantitative analysis of growth and volatile fatty acid production by the anaerobic ruminal bacterium Megasphaera elsdenii T81. Appl Microbiol Biotechnol 97:4075–4081. https://doi.org/10.1007/S00253-012-4645-4/METRICS
MarketsandMarkets (2020) Lactic acid market by application (biodegradable polymers, food & beverages, pharmaceutical products), form, and region, polylactic acid market, by application (packaging, fiber & fabrics, agriculture), form, and region - Global Forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/polylacticacid-387.html. Accessed 14 Jun 2022
Wang L, Zhao B, Liu B et al (2010) Efficient production of l-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresour Technol 101:7895–7901. https://doi.org/10.1016/J.BIORTECH.2010.05.018
Amin N, Aslam M, Khan Z, Yasin M, Hossain S, Shahid MK, Inayat A, Samir A, Ahmad R, Murshed MN, Khurram MS, El Sayed ME, Ghauri, M. (2023) Municipal solid waste treatment for bioenergy and resource production: potential technologies, techno-economic-environmental aspects and implications of membrane-based recovery. Chemosphere 323:138196. https://doi.org/10.1016/j.chemosphere.2023.138196
FAO (2019) The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. 198. https://doi.org/10.4060/CA6030ES
Wang Q, Li H, Feng K, Liu J (2020) Oriented fermentation of food waste towards high-value products: a review. Energies 13:5638. https://doi.org/10.3390/EN13215638
Alves de Oliveira R, Komesu A, Vaz Rossell CE, Maciel Filho R (2018) Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects. Biochem Eng J 133:219–239. https://doi.org/10.1016/J.BEJ.2018.03.003
Jiang D, Zhu S (2021) Advances in dark fermentation hydrogen production technologies. In: Waste to Renewable Biohydrogen. Academic Press, pp 123–137
Anagnostopoulou C, Kontogiannopoulos KN, Gaspari M et al (2022) Valorization of household food wastes to lactic acid production: a response surface methodology approach to optimize fermentation process. Chemosphere 296:133871. https://doi.org/10.1016/J.CHEMOSPHERE.2022.133871
Cripwell RA, Favaro L, Viljoen-Bloom M, van Zyl WH (2020) Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: achievements and challenges. Biotechnol Adv 42:107579. https://doi.org/10.1016/J.BIOTECHADV.2020.107579
Schnürer A, Jarvis A (2010) Microbiological Handbook for Biogas Plants. Swedish Waste Management U, 1–74.
Chenebault C, Moscoviz R, Trably E et al (2022) Lactic acid production from food waste using a microbial consortium: focus on key parameters for process upscaling and fermentation residues valorization. Bioresour Technol 354:127230. https://doi.org/10.1016/J.BIORTECH.2022.127230
Abdel-Rahman MA, Tashiro Y, Sonomoto K (2011) Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol 156:286–301. https://doi.org/10.1016/J.JBIOTEC.2011.06.017
Adekunle KF, Okolie JA (2015) A review of biochemical process of anaerobic digestion. Adv Biosci Biotechnol 6:205–212. https://doi.org/10.4236/abb.2015.63020
Monlau F, Barakat A, Trably E et al (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322. https://doi.org/10.1080/10643389.2011.604258
Yousuf A, Bastidas-Oyanedel JR, Schmidt JE (2018) Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag 77:516–521. https://doi.org/10.1016/J.WASMAN.2018.04.035
Li J, Zhang W, Li X et al (2018) Production of lactic acid from thermal pretreated food waste through the fermentation of waste activated sludge: effects of substrate and thermal pretreatment temperature. Bioresour Technol 247:890–896. https://doi.org/10.1016/J.BIORTECH.2017.09.186
Song L, Yang D, Liu R et al (2023) The dissolution of polysaccharides and amino acids enhanced lactic acid production from household food waste during pretreatment process. Sci Total Environ 864:161068. https://doi.org/10.1016/J.SCITOTENV.2022.161068
Cabrol L, Marone A, Tapia-Venegas E et al (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043
Zhang Z, Tsapekos P, Alvarado-Morales M, Angelidaki I (2021) Bio-augmentation to improve lactic acid production from source-sorted organic household waste. J Clean Prod 279:123714. https://doi.org/10.1016/J.JCLEPRO.2020.123714
Kwan TH, Hu Y, Lin CSK (2016) Valorisation of food waste via fungal hydrolysis and lactic acid fermentation with Lactobacillus casei Shirota. Bioresour Technol 217:129–136. https://doi.org/10.1016/J.BIORTECH.2016.01.134
Peinemann JC, Demichelis F, Fiore S, Pleissner D (2019) Techno-economic assessment of non-sterile batch and continuous production of lactic acid from food waste. Bioresour Technol 289. https://doi.org/10.1016/J.BIORTECH.2019.121631
Tang J, Wang X, Hu Y et al (2016) Lactic acid fermentation from food waste with indigenous microbiota: effects of pH, temperature and high OLR. Waste Manag 52:278–285. https://doi.org/10.1016/J.WASMAN.2016.03.034
Itoh Y, Tada K, Kanno T, Horiuchi JI (2012) Selective production of lactic acid in continuous anaerobic acidogenesis by extremely low pH operation. J Biosci Bioeng 114:537–539. https://doi.org/10.1016/J.JBIOSC.2012.05.020
Pau S, Tan LC, Lens PNL (2022) Effect of pH on lactic acid fermentation of food waste using different mixed culture inocula. J Chem Technol Biotechnol 97:950–961. https://doi.org/10.1002/JCTB.6982
Yang L, Chen L, Li H et al (2022) Lactic acid production from mesophilic and thermophilic fermentation of food waste at different pH. J Environ Manag 304:114312. https://doi.org/10.1016/J.JENVMAN.2021.114312
da Silva D, Fernandes BS, da Silva AJ (2021) Effect of initial pH and substrate concentration on the lactic acid production from cassava wastewater fermentation by an enriched culture of acidogenic. Water Environ Res 93:1925–1933. https://doi.org/10.1002/wer.1467
Zhang B, He PJ, Ye NF, Shao LM (2008) Enhanced isomer purity of lactic acid from the non-sterile fermentation of kitchen wastes. Bioresour Technol 99:855–862. https://doi.org/10.1016/J.BIORTECH.2007.01.010
Unban K, Kanpiengjai A, Khatthongngam N et al (2019) Simultaneous bioconversion of gelatinized starchy waste from the rice noodle manufacturing process to lactic acid and maltose-forming α-amylase by Lactobacillus plantarum S21, Using a Low-Cost Medium. https://doi.org/10.3390/fermentation5020032
Canto-Robertos M, Quintal-Franco C, Ponce-Caballero C et al (2022) Fungal solid-state fermentation of food waste for biohydrogen production by dark fermentation. Int J Hydrogen Energy 47:30062–30073. https://doi.org/10.1016/J.IJHYDENE.2022.06.313
Muñoz-Páez KM, Alvarado-Michi EL, Buitrón G, Valdez-Vazquez I (2019) Distinct effects of furfural, hydroxymethylfurfural and its mixtures on dark fermentation hydrogen production and microbial structure of a mixed culture. Int J Hydrogen Energy 44:2289–2297. https://doi.org/10.1016/J.IJHYDENE.2018.04.139
APHA (2005) Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA:Washington, DC, USA, 2005. American Water Works Association/American Public Works Association/Water Environment Federation. https://doi.org/10.2105/AJPH.51.6.940-a
Dubois M, Gilles KA, Hamilton JK et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017
González-Tenorio D, Muñoz-Páez KM, Valdez-Vazquez I (2022) Butanol production coupled with acidogenesis and CO2 conversion for improved carbon utilization. Biomass Convers Biorefin 12:2121–2131. https://doi.org/10.1007/S13399-020-00805-Y/FIGURES/5
Valdez-Vazquez I, Castillo-Rubio LG, Pérez-Rangel M et al (2019) Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains. Ind Crops Prod 137:105–111. https://doi.org/10.1016/j.indcrop.2019.05.023
Zavala-Méndez M, Vargas A, Carrillo-Reyes J (2022) Maximization of bio-hydrogen production from winery vinasses using on-line feedback control. Int J Hydrogen Energy 47:33259–33271. https://doi.org/10.1016/J.IJHYDENE.2022.07.196
Feng K, Wang Q, Li H et al (2020) Effect of fermentation type regulation using alkaline addition on two-phase anaerobic digestion of food waste at different organic load rates. Renew Energy 154:385–393. https://doi.org/10.1016/J.RENENE.2020.03.051
Chen X, Yuan H, Zou D et al (2015) Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chem Eng J 273:254–260. https://doi.org/10.1016/J.CEJ.2015.03.067
Wang Q, Yang L, Feng K et al (2021) Promote lactic acid production from food waste fermentation using biogas slurry recirculation. Bioresour Technol 337:125393. https://doi.org/10.1016/J.BIORTECH.2021.125393
Tang J, Wang XC, Hu Y et al (2017) Effect of pH on lactic acid production from acidogenic fermentation of food waste with different types of inocula. Bioresour Technol 224:544–552. https://doi.org/10.1016/J.BIORTECH.2016.11.111
Kim M, Gomec CY, Ahn Y, Speece RE (2008) Hydrolysis and acidogenesis of particulate organic material in mesophilic and thermophilic anaerobic digestion. 24:1183–1190. https://doi.org/10.1080/09593330309385659
García-Depraect O, Castro-Muñoz R, Muñoz R et al (2021) A review on the factors influencing biohydrogen production from lactate: the key to unlocking enhanced dark fermentative processes. Bioresour Technol 324:124595. https://doi.org/10.1016/j.biortech.2020.124595
Canto-Robertos M, Quintal-Franco C, Ponce-Caballero C et al (2022) Inhibition of hydrogen production by endogenous microorganisms from food waste. Braz J Chem Eng. https://doi.org/10.1007/S43153-022-00235-5
Guo XM, Trably E, Latrille E et al (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2010.03.008
Łukajtis R, Hołowacz I, Kucharska K et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/J.RSER.2018.04.043
Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39. https://doi.org/10.1080/10643380600729071
De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer KH, Whitman WB (2011) Bergey’s manual of systematic bacteriology - Volume 3: The Firmicutes. Springer Science & Business Media
Bergey DH (2010) Bergey's manual of systematic bacteriology: Volume 4: The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes (Vol. 4). Springer Science & Business Media
Matsumoto M, Nishimura Y (2007) Hydrogen production by fermentation using acetic acid and lactic acid. J Biosci Bioeng 103:236–241. https://doi.org/10.1263/JBB.103.236
Gomez-Flores M, Nakhla G, Hafez H (2017) Hydrogen production and microbial kinetics of Clostridium termitidis in mono-culture and co-culture with Clostridium beijerinckii on cellulose. AMB Express 7:1–12. https://doi.org/10.1186/S13568-016-0256-2. (2016 7:1)
Wang X-M, Wang Q-H, Wang X-Q, Ma H-Z (2011) Effect of different fermentation parameters on lactic acid production from kitchen waste by Lactobacillus TY50. Chem Biochem Eng Q 25:433–438
Song L, Yang D, Liu R et al (2022) Microbial production of lactic acid from food waste: latest advances, limits, and perspectives. Bioresour Technol 345:126052. https://doi.org/10.1016/J.BIORTECH.2021.126052
Li X, Chen H, Hu L et al (2011) Pilot-scale waste activated sludge alkaline fermentation, fermentation liquid separation, and application of fermentation liquid to improve biological nutrient removal. Environ Sci Technol 45:1834–1839. https://doi.org/10.1021/ES1031882/SUPPL_FILE/ES1031882_SI_001.PDF
Zhang P, Chen Y, Zhou Q et al (2010) Understanding short-chain fatty acids accumulation enhanced in waste activated sludge alkaline fermentation: kinetics and microbiology. Environ Sci Technol 44:9343–9348. https://doi.org/10.1021/ES102878M/SUPPL_FILE/ES102878M_SI_001.PDF
Lim SJ, Kim BJ, Jeong CM et al (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour Technol 99:7866–7874. https://doi.org/10.1016/J.BIORTECH.2007.06.028
Macquiddy EL Sr (1964) A study of lactobacillus acidophilus and lactobacillus bifidus. Nebr State Med J 49:21–26
Okano K, Yoshida S, Tanaka T et al (2009) Homo-D-lactic acid fermentation from arabinose by redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:5175–5178. https://doi.org/10.1128/AEM.00573-09
Okano K, Yoshida S, Yamada R et al (2009) Improved production of homo-d-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858. https://doi.org/10.1128/AEM.01692-09