Laccase mediated delignification of pineapple leaf waste: an ecofriendly sustainable attempt towards valorization
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zahari MAKM, Abdullah SSS, Roslan AM, Ariffin H, Shirai Y, Hassan MA (2014) Efficient utilization of oil palm frond for bio-based products and biorefinery. J Clean Prod 65:252–260
Porzi GF, Prussi M, Chiaramonti D, Pari L (2012) Modelling lignocellulosic bioethanol from poplar: estimation of the level of process integration, yield and potential for co-products. J Clean Prod 34:66–75
Yang Y, Sharma-Shivappa R, Burns JC, Cheng JJ (2009) Dilute acid pretreatment of oven-dried switchgrass germplasms for bioethanol production. Energy Fuels 23:3759–3766
Panagiotopoulos IA, Lignos GD, Bakker RR, Koukios EG (2012) Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J Clean Prod 32:45–51
FAOSTAT (2015) http://faostat3.fao.org/browse/Q/*/E . Accessed 20 Feb 2016
Indian Horticulture Database (2014) National Horticulture Board, Ministry of Agriculture, Govt. of India 249
Roda A, Faver DMD, Dordoni R, Lambri M (2016) Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. J Clean Prod 112:4477–4484
Samuel R, Foston M, Jaing N, Cao S, Allison L, Studer M (2011) HSQC (heteronuclear single quantum coherence) 13C-1 H correlation spectra of whole biomass in perdeuterated pyridinium chloride-DMSO system: an effective tool for evaluating pretreatment. Fuel 90:2836–2842
Camarero S, Ibarra D, Martínez MJ, Martínez AT (2005) Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol 71:1775–1784
Kataria R, Ruhal R, Babu R, Ghosh S (2013) Saccharification of alkali treated biomass of Kans grass contributes higher sugar in contrast to acid treated biomass. Chem Eng J 230:36–47
Ranjan A, Moholkar VS (2013) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel 112:567–571
Heap L, Green A, Brown D, Dongenc BV, Turner N (2014) Role of laccase as an enzymatic pretreatment method to improve lignocellulosic saccharification. Catal Sci Technol 4:2251–2259
Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Accessibility of enzymatically delignified bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzyme Res 2011:1–8
Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7:6
Bingol D, Kulcu M (2011) Optimization of the solid phase extraction method for determination of Cu(II) in natural waters by using response surface methodology. Analyst 136:4036–4044
Hussain MA, Huq ME, Rahman SM (2002) Estimation of lignin in jute by titration method. Pak J Biol Sci 5:521–522
Viles FJ, Silverman L (1949) Determination of starch and cellulose with anthrone. Anal Chem 21:950–953
Marlett JA, Lee SC (2006) Dietary fiber, lignocellulose and hemicellulose contents of selected foods determined by modified and unmodified van soest procedures. J Food Sci 45:1688–1693
Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428
Bhattacharya SS, Banerjee R (2008) Laccase mediated biodegradation of 2,4 dichlorophenol using response surface methodology. Chemosphere 73:83–85
Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical methods for estimating the degree of crystallinity of native cellulose using the X-ray diffraction. Textile Res J 29:786–794
Cassellis MER, Pardo MES, Lopez MR, Escobedo RM (2014) Structural, physico-chemical and functional properties of industrial residues of pineapple (Ananas comosus). Cellulose Chem Technol 48:633–641
Rajak RC, Banerjee R (2015) Enzymatic delignification: an attempt for lignin degradation from lignocellulosic feedstock. RSC Adv 5:75281–77591
Demirbas A (2003) Relationships between heating value and lignin, fixed carbon, and volatile material contents of shells from biomass products. Energy Source 25:629–635
Ghali AE, Marzoug IB, Baouab MHV, Roudesli MS (2012) Separation and characterization of new cellulosic fibres from the Juncus acutus plant. Bioresour Technol 7:2002–2018
Ding TY, Hii SL, Ong LGA (2012) Comparison of pretreatment strategies for conversion of coconut husk fiber to fermentable sugars. Bioresour Technol 7:1540–1547
Shi J, Li J (2012) Metabolites and chemical group changes in the wood forming tissue of Pinus koraiensis under inclined condition. Bioresour Technol 7:3465–3475
Sun Q, Foston M, Meng X, Sawada D, Pingali SV, Neill HMO, Li H, Wyman CE, Langan P, Ragauskas AJ, Kumar R (2014) Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment. Biotechnol Biofuels 7:150
Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10
Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R (2011) Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI J 10:85–96
Katinonkul W, Lee JS, Ha SH, Park JY (2012) Enhancement of enzymatic digestibility of oil palm empty fruit bunch by ionic-liquid pretreatment. Energy 47:11–16
Shevchenko SM, Chang K, Robinson J, Saddler JN (2000) Optimization of monosaccharide recovery by post-hydrolysis of the water-soluble hemicellulose component after steam explosion of softwood chips. Bioresour Technol 72:207
Tanaka M, Ikesaka M, Matsuno R (1988) Effect of pore size in substrtae and diffusion of enzyme on hydrolysis of cellulosic materials with cellulase. Biotechnol Bioeng 32:698–706
Wong KY, Deverell KF, Mackie KL, Clark TA, Donaldson LA (1988) The relationship between fibre porosity and cellulose digestibility in steam-exploded Pinus radiata. Biotechnol Bioeng 31:447–456