Laboratory organic matter maturation at high pressures: heat-up effect on vitrinite reflectance

Swiss Journal of Geosciences - Tập 105 - Trang 171-181 - 2012
Ronan Le Bayon1
1Institut für Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany

Tóm tắt

A laboratory study was conducted to assess the effect of heat-up to high diagenetic to low metamorphic temperatures on vitrinite reflectance (VR) at high pressures using the same heat-up processes, apparatus and starting material as those employed in prior experimental studies on huminite/vitrinite maturation. “Heat-up” is the isobaric increase in temperature of an organic matter maturation experiment from room temperature to the desired run temperature T ehu (T ehu  = temperature at the end of heat-up). The experiments were performed on xylite of swamp cypress and used a heating rate of 50 °C/min. These confined system maturation experiments were carried out at 10 kbar and involved temperatures T ehu ranging from 175 to 450 °C. Additional experiments were conducted at pressures of 5, 20 and 25 kbar to evaluate the influence of pressure on the effect of heat-up on VR. At 10 kbar, results of this study show that heat-up does not influence VR for T ehu  < ~270 °C. This absence of maturation is viewed as the result of an activation time delaying vitrinite maturation at these diagenetic to very low metamorphic temperatures. For T ehu  > ~270 °C, heat-up has a significant effect on VR at 10 kbar: VR greatly increases with T ehu during the short heat-up event. This effect of heat-up on VR points out the rapid kinetics of the initial VR increase. Increasing pressure reduces VR increase gained during heat-up. Obviously, pressure retards the initial VR increase and thus controls organic matter maturation. In addition to temperature, the formulation of VR evolution rate equation must consider pressure, activation time and VR gained during heat-up.

Tài liệu tham khảo

Árkai, P., Ferreiro Mählmann, R., Suchy, V., Balogh, K., Sykorová, I., & Frey, M. (2002). Possible effects of tectonic shear strain on phyllosilicates: a case study from the Kandersteg area, Helvetic domain, Central Alps, Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 82, 273–290. Bonijoly, M., Oberlin, M., & Oberlin, A. (1982). A possible mechanism for natural graphite formation. International Journal of Coal Geology, 1, 283–312. Buiskool Toxopeus, J. M. A. (1983). Selection criteria for the use of vitrinite reflectance as a maturity tool. In J. Brooks (Ed.), Petroleum Geochemistry and Exploration of Europe (pp. 295–307). Oxford: Blackwell Scientific Publications. Burkhard, M., & Kalkreuth, W. (1989). Coalification in the northern Wildhorn nappe and adjacent units, western Swizerland. Implications for tectonic burial histories. International Journal of Coal Geology, 11, 47–64. Burnham, A. K., & Sweeney, J. J. (1989). A chemical kinetic model of vitrinite maturation and reflectance. Geochimica et Cosmochimica Acta, 53, 2649–2657. Carr, A. D. (1999). A vitrinite reflectance kinetic model incorporating overpressure retardation. Marine and Petroleum Geology, 16, 355–377. Carr, A. D. (2000). Suppression and retardation of vitrinite reflectance, Part 1. Formation and significance for hydrocarbon generation. Journal of Petroleum Geology, 23, 313–343. Dalla Torre, M., de Capitani, C., Frey, M., Underwood, M. B., Mullis, J., & Cox, R. (1996). Very low-grade metamorphism of shales from the Diablo Range, Franciscan Complex, California, USA: New constraints on the exhumation path. Geological Society of America Bulletin, 108, 578–601. Dalla Torre, M., Ferreiro Mählmann, R., & Ernst, W. G. (1997). Experimental study on the pressure dependence of vitrinite maturation. Geochimica et Cosmochimica Acta, 61, 2921–2928. Ernst, W.G., & Ferreiro Mählmann, R. (2004). Vitrinite alteration rate as a function of temperature, time, starting material, aqueous fluid pressure and oxygen fugacity—Laboratory corroboration of prior work. In: R.J. Hill, J. Leventhal, Z. Aizenshtat, M.J. Baedecker, G. Claypool, R. Eganhouse, M. Goldhaber & K. Peters (Eds.), Geochimical Investigations in Earth and Space Science: A Tribute to Isaac R. Kaplan (pp. 341–357). The Geochemical Society, No. 9. Ferreiro Mählmann, R. (2001). Correlation of very low grade data to calibrate a thermal maturity model in a nappe tectonic setting, a case study from the Alps. Tectonophysics, 334, 1–33. Frey, M., & Robinson, D. (1999). Low-grade metamorphism (p. 313). Oxford: Blackwell Science. Frey, M., Teichmüller, M., Teichmüller, R., Mullis, J., Künzi, B., Breitschmid, A., et al. (1980). Very low-grade metamorphism in external parts of the Central Alps: illite crystallinity, coal rank and fluid inclusion data. Eclogae Geologicae Helvetiae, 73, 173–203. Hao, F., Zou, H., Gong, Z., Yang, S., & Zeng, Z. (2007). Hierarchies of overpressure retardation of organic matter maturation: case studies from petroleum basins in China. American Association of Petroleum Geologists Bulletin, 91, 1467–1498. Hood, A., Gutjahr, C. M., & Heacock, R. L. (1975). Organic metamorphism and the generation of petroleum. American Association of Petroleum Geologists Bulletin, 59, 986–996. Huang, W. L. (1996). Experimental study of vitrinite maturation: effects of temperature, time, pressure, water, and hydrogen index. Organic Geochemistry, 24, 233–241. Huang, W. L., Longo, J. M., & Pevear, D. (1993). An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162–177. Hunt, J. M., Lewan, M. D., & Hennet, R. J. C. (1991). Modeling oil generation with time-temperature index graphs based on the Arrhenius equation. American Association of Petroleum Geologists Bulletin, 75, 795–807. ICCP—International Committee for Coal and Organic Petrology. (1998). The new vitrinite classification (ICCP System 1994). Fuel, 77, 349–358. ICCP—International Committee for Coal and Organic Petrology. (2005). Classification of huminite–ICCP System 1994. International Journal of Coal Geology, 62, 85–106. Larter, S. (1988). Some pragmatic perspectives in source rock geochemistry. Marine and Petroleum Geology, 5, 194–204. Le Bayon, R., Adam, C., & Ferreiro Mählmann, R. (2012a). Experimentally determined pressure effect on vitrinite reflectance at 450 °C. International Journal of Coal Geology, 92, 69–81. Le Bayon, R., Brey, G. P., Ernst, W. G., & Ferreiro Mählmann, R. (2011). Experimental kinetic study of organic matter maturation: Time and pressure effects on vitrinite reflectance at 400 °C. Organic Geochemistry, 42, 340–355. Le Bayon, R., Buhre, S., Schmidt, B. C., & Ferreiro Mählmann, R. (2012b). Experimental organic matter maturation at 2 kbar: Heat-up effect to low temperatures on vitrinite reflectance. International Journal of Coal Geology, 92, 45–53. Le Bayon, R., de Capitani, C., & Frey, M. (2006). Modelling phase-assemblage diagrams for magnesian metapelites in the system K2O–FeO–MgO–Al2O3–SiO2–H2O: geodynamic consequences for the Monte Rosa nappe, Western Alps. Contributions to Mineralogy and Petrology, 151, 395–412. Levine, J.R. (1993). Coalification: the evolution of coal as a source rock and reservoir rock for oil and gas. In: B.E. Law & D.D. Rice (Eds.), Hydrocarbons from Coal (pp. 39–77). American Association of Petroleum Geologists Bulletin: Studies in Geology, Ser. 38. Lewan, M. D. (1993). Laboratory simulation of petroleum formation: hydrous pyrolysis. In M. H. Engel & S. A. Macko (Eds.), Organic Geochemistry (pp. 419–442). New York: Plenum Press. Lopatin, N. V. (1971). Temperature and geologic time as factors in coalification (in Russian). Izvestiya Akademii Nauk SSSR Seriya Geologicheskaya, 3, 95–106. Monthioux, M. (1988). Expected mechanisms in nature and in confined-system pyrolysis. Fuel, 67, 843–848. Monthioux, M., Landais, P., & Durand, B. (1986). Comparison between extracts from natural and artificial maturation series of Mahakam delta coals. Organic Geochemistry, 10, 299–311. Monthioux, M., Landais, P., & Monin, J. C. (1985). Comparison between natural and artificial maturation series of humic coals from the Mahakam delta, Indonesia. Organic Geochemistry, 8, 275–292. Rantitsch, G., Sachsenhofer, R. F., Hasenhüttl, C., Russegger, B., & Rainer, T. (2005). Thermal evolution of an extensional detachment as constrained by organic metamorphic data and thermal modeling: Graz Paleozoic Nappe Complex (Eastern Alps). Tectonophysics, 411, 57–72. Stach, F., Mackowsky, M.-T., Teichmüller, M., Taylor, G.H., Chandra, D. & Teichmüller, R. (1982). Textbook of Coal Petrology (535 pp.). Berlin, Stuttgart: Gebrüder Borntraeger. Suzuki, N., Matsubayashi, H., & Waples, D. W. (1993). A simpler kinetic model of vitrinite reflectance. American Association of Petroleum Geologists Bulletin, 77, 1502–1508. Sweeney, J. J., & Burnham, A. K. (1990). Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. American Association of Petroleum Geologists Bulletin, 74, 1559–1570. Taylor, G.H., Teichmüller, M., Davies, A., Diessel, C.F.K., Littke, R., Robert, P., (1998). Organic Petrology (704 pp.). Berlin: Gebrüder Borntraeger. Teichmüller, M., & Teichmüller, R. (1954). Die stoffliche und strukturelle Metamorphose der Kohle. Geologische Rundschau, 42, 265–296. Tissot, B.P., & Welte, D.H. (1978). Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration (538 pp.). Berlin: Springer-Verlag. Tissot, B.P., & Welte, D.H. (1984). Petroleum Formation and Occurrence (699 pp.). Berlin, Heidelberg, New York: Springer-Verlag. van Krevelen, D. W. (1953). Physikalische Eigenschaften und chemische Struktur der Steinkohle. Brennstoff-Chemie, 33, 167–182. van Krevelen, D.W. (1961). Coal (514 pp.). Amsterdam: Elsevier. Waples, D. W. (1980). Time and temperature in petroleum formation: application of Lopatin’s method to petroleum exploration. American Association of Petroleum Geologists Bulletin, 64, 916–926. Waples, D. W., Kamata, H., & Suizu, M. (1992). The art of maturity modelling. Part 1: finding a satisfactory geologic model. American Association of Petroleum Geologists Bulletin, 76, 31–48.